

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Wildfires: under control or out of control?

M. Sofiev R. Hänninen, E.Kadantsev, SILAM & IS4FIRES team

Short answer

- It depends
- ...on what control means
- ...on what region we are talking
- ...on what criterion of success

Fire suppression vs fire management

- Goal is the same: minimize the fire-related damage of all kinds
- Fire suppression
 - minimize fire occurrences, put down discovered fires as fast as possible
 - resources for fire fighting brigades
 - agriculture practices
 - application mostly in wildland-urban interface
 - tempting as an overall strategy, disproven
- Fire management
 - forest management
 - fuel management
 - agriculture practices
 - education and prophylactics

Fires are part of natural ecosystem

- Key functions
 - Cleaning the debris
 - Regulating the plant population and composition
 - Fertilizing soils
 - . . .
- Small-scale vs mega-fires
 - Small fires destroy dry debris and, partly, small plants
 - big trees survive with minor/moderate stress
 - soil is next to intact: sterilization of few mm at most
 - recovery within days/weeks
 - Mega fires wipe out vegetation completely
 - no plant survivors
 - soil sterilization of a few cm
 - long recovery, irreversible changes in plant composition

By Ian Sutton from Collinsville and Oberon, Australia - A flame in the forest Uploaded by berichard, CC BY 2.0, <u>https://commons.wikimedia.org/w/index.php?curid=9980430</u> On the photo: *Telopea speciosissima (waratah)*

IS4FIRES-SILAM fire smoke forecast and reanalysis

- Fire information: satellite hot-spot observations
 - processing and emission calculation: IS4FIRES
 - smoke dispersion: atmospheric composition model SILAM
- Daily fire smoke forecast, global
 - Resolution:
 - 0.1° (10 km) fire smoke
 - 0.2° (20 km) all pollutants, air quality
- Reanalysis / climate predictions
 - 1980-c.m. Detailed reanalysis
 - 1900-2100 Climate-scale analysis

http://silam.fmi.fi

PM concentration, μ g m⁻³, 14:00, 4.07.2025

Optical column thickness

Fires: a socio-environmental issue

- About-90% of fires are ignited by humans
 - Agriculture practices
 - Industry, including but not limiting to forest industry
 - Land-use modification
 - Leisure and recreational activities
- Natural fire ignition: practically only lightning
- Fire propagation is driven by nature but affected by human intervention
 - Heat and wind are the key promoters of fires
 - Rain and humidity are the main suppressors of fires
 - Fire fighting is the main way humans control the fires
- Fire mitigation in the long term: forest management and societal development

Fires: a socio-environmental issue

METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Exposure to fire smoke

 Mean exposure to fire-induced PM_{2.5}, 2003-2020 IS4FIRES + SILAM 2003-2023 mean PM-fine concentration [μg/m³] 10¹ · 10⁰ · 10⁻¹ · 10⁻² · 10⁻³ ·

Trend of PM-fine concentration [μ g/m³ per year]

Romanello et al, 2024. The Lancet. doi: 10.1016/S0140-6736(24)01822-1

 Trend of exposure blue-red: p < 0.1, significant violet-brown: p > 0.1, not significant

Exposure to fire smoke

2003-2023 mean PM-fine concentration [μ g/m³]

Trend of PM-fine concentration [μ g/m³ per year]

Romanello et al, 2024. The Lancet. doi: 10.1016/S0140-6736(24)01822-1

Trends in Europe

- Left: fire smoke exposure, 2003 2022
- Right: fire risk (Fire Weather Index), 1980-2022

Fire management in the US

- US National Emission Inventory
 - prescribed fires in the east
 - wildfires on the west
- Total emission (calculated) is lower for prescribed fires
- Total burnt area (reported) is lower for wildland fires
- Criterion of success?

Figure 2. Total 2017 NEI acres burned (top) and PM_{2.5} emissions by state (bottom).

Baker et al, 2020. The Magazine for Envir.Managers, also in US EPA, 2021. (rep. No. 600/R–21/044),

Conditions and actions

- Forest management with fire safety in mind
 - prescribed fires where safe (Northern Europe, Eastern US)
 - smoke may be even worse than that of wildfires due to lower burning intensity
 - landscape planning
 - handling the deadwood
- Agriculture practices with less reliance on fires
 - expensive and laborious
 - possibly more climate impact (machinery fuel use)
- Year-round preparedness in some regions
 - multi-annual droughts mean permanent fire risk (California fires were in January)
- Information, education, and compliance
 - "evacuate" (US) vs "stay and defend" (Australia)
 - professional actions vs unprepared volunteers

Summary

- Till now, fires, both intensity and trends, can be kept under control over most of the world (a bold wishful thinking?)
- Fire management is a multi-dimensional problem with few shortcuts
- Fire suppression policy alone seems to be not sufficient
 - fuel accumulation nearly uncontrolled
 - lower preparedness of the society
 - eventually, disastrous fires overwhelm suppression efforts eliminating all apparent savings
- Changing climate requires changes in the mitigation/adaptation efforts
 - In many places the "fire season" is turning to "permanent fire season" (California fires in 2025 were in January)