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1 Introduction 
Within VALUE-Dx, Task 2.1.3 aimed to quantifying antimicrobial resistance and the 
associated microbiome in community-acquired acute respiratory tract infections (CA-
ARTI) patients. 

This task utilized samples from the clinical studies PRUDENCE and ADEQUATE performed 
in work package 4 (WP4). Upper respiratory (PRUDENCE and ADEQUATE) and stool (only 
PRUDENCE) samples were collected at the time of the primary consultation and before 
the start of antibiotic, respectively, and then at several timepoints, to assess the impact 
of antibiotics on the respiratory and intestinal microbiota. DNA extraction and 
sequencing were carried out at the University of Antwerp, as well as the 16S sequencing 
analysis, while the bioinformatic and statistical analyses post shotgun metagenomic 
sequencing were performed at BIOASTER.  

Shotgun metagenomic sequencing from oropharyngeal swabs (ADEQUATE) and stools 
(PRUDENCE), and 16S sequencing from nasopharyngeal swabs (PRUDENCE), allowed 
identification and quantification of the bacterial aetiologies in CA-ARTI patients. 
However, these approaches did not enable the identification of viral pathogens and 
therefore distinction between bacterial and viral (co)aetiologies.  

Microbiota composition and differences between patients treated with antibiotics and 
untreated controls were studied, as well as microbiota variation across timepoints. 
Differential analysis of antimicrobial resistant genes was further investigated, and 
statistical models were applied to highlight the difference in AMR selection by antibiotics. 

 

 

2 Material & Method 
2.1 Covariate selection for randomization 
2.1.1 Introduction 

This section presents a strategy to prioritize clinical covariates used to randomize 
samples in the extraction step. The goal of the randomization is to ensure that 
confounding variables (clinical or technical) are uniformly distributed across batches, 
making their correction possible. Before this short analysis, discussions within the 
project team led to the identification of four commonly selected covariates, sex, age, 
symptom, treatment. Since both cohorts are concerned with community acquired acute 
respiratory tract infection (CA-ARTI), the sampling site also seems an important 
information to consider (due to variation in care). Given that the targets for inclusion are 
relatively low (49 and 114 patients for ADEQUATE and PRUDENCE), the number of 
covariates should be restricted to a handful to ensure a robust estimation of the 
confounding effects. The content of the clinical forms is detailed section 2.1.2, the 
strategy underlying the variable selection is laid out in section 2.1.3. 
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2.1.2 Form content 

Despite the differences in metadata files between ADEQUATE and PRUDENCE, their format 
remains similar, enabling a shared data processing. Table 1 displays the count of samples 
and variables categorized by type for each file. The way metadata are structured is as 
follows, a first categorical variable (often binary) indicates whether the patient presents 
a particular symptom, has undergone a specific treatment or a clinical examination. A 
second variable (mainly categorical) then specifies the gravity of the symptom, the type 
of treatment or the examination result, from a pre-specified list (most of the time). In the 
case of cough for example, the first variable indicates the presence of the symptom, the 
second relates to the severity (mild, moderate or severe). This two-level structure was 
not leveraged in this work, instead we decided to focus on all categorical variables 
because they are easier to handle and make up the majority of covariates. 

 

Cohort Form  N samples N checkbox 
radiobutton 

N text N integer 
decimal 

N date 

ADEQUATE 
 

02aP - Signs and Symptoms at ER 
and Management Plan at Baseline 

49 63 30 35 2 

02b - Vaccination 49 17 4 6 3 

02bP - Participant Background 49 13 1 3 0 

02cP - Co-morbidities and Chronic 
Medication 

49 16 9 0 0 

03aP - Clinical Decision after 
Randomisation and Initial Results 

49 4 1 4 2 

03b - Study Samples (only for 
intervention group) 

24 59 2 6 2 

(Serious) Adverse Events 
(Paediatric) 

0 27 14 2 13 

PRUDENCE 
 

Demographics_20240307 115 1 0 1 0 

FWdiag_20240307 115 1 1 0 0 

Med_20240307 115 7 1 0 0 

Medhis_20240307 115 17 4 0 0 

Prescribing_20240307 115 11 2 0 0 

SAE_20240307 3 18 16 9 8 

SAE_med_20240307 13 1 4 1 2 

SARSCOV_20240307 115 3 1 0 1 

Table 1: Metadata files used for the study. 

 

2.1.3 Strategy used for covariate selection 

In this analysis, we employed a two-step strategy, first we pre-filtered covariates based 
on their frequencies, then, we refined them manually. The initial step involves selecting 
covariates that have sufficient observations across all levels to be randomized in multiple 
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batches. The second, prioritizes manually the covariates that are most likely to have the 
highest impact on the microbiota composition. 

 

2.1.3.1 Pre-filtering step 

Each run will contain 24 samples extracted manually. While all runs will include negative 
controls, only one will be spiked with a positive control. For simplicity we assumed that 
22 clinical samples will be processed in each run. The pre-filtering step involved retaining 
a categorical covariate only if at least two combinations of levels can be included in 
triplicate in each run. The idea is that, despite some covariates may have under-
populated levels, when combined together, the resulting meta-levels become sufficiently 
large for randomization. Practically, for a given variable, the sample size associated with 
each level is compared to a threshold defined as (total samples – nReplicates x nBatches) 
samples, with nReplicates=3 and nBatches the total number of batches needed. If all 
levels are smaller than this threshold, it means that the samples are not assigned to a 
single level. Therefore, in the most extreme case, the smallest levels can be merged in a 
way that at least 3 replicates of this meta-level are present in each batch. In the case of 
cough severity (ADEQUATE), out of a total of 49 patients, 45 were positive and 10, 24, 10 
were found with mild, moderate and severe cough. The total number of patients being 
49, 3 runs will be needed, leading to a threshold = 49 – (3x3) = 40. All levels are below this 
threshold, which implies that this covariate successfully passes the pre-filtering step. If 
this variable was to be used for randomization, the 4 negatives samples will have to be 
merged, probably with the mild patients, to ensure that 3 replicates of each level are 
present in each batch. 44 and 22 covariates were pre-filtered using this criterion and are 
presented in Table 2. 

 

ADEQUATE 

 

Site name                                                                            
Fever, Severity                                                                                                         
Cough, Severity 
Cough with sputum production, Is symptom present? 
Cough with sputum production, Severity 
Sore throat, Is symptom present? 
Sore throat, Severity                                                                                                     
Nasal congestion or runny nose, Severity                                                                                
Low energy and/or tired, Severity 
Abdominal pain, Is symptom present? 
Abdominal pain, Severity                                                                                       
Nausea and/or vomiting, Is symptom present?                                                                             
Nausea and/or vomiting, Severity    
Diarrhoea, Is symptom present? 
Diarrhoea, Severity         
Not sleeping well, Is symptom present?     
Not sleeping well, Severity                                                                         
Feeling generally unwell, Is symptom present?                                                                           
Feeling generally unwell, Severity                                                                                      
Respiratory rate available?                                                                                             
Has the patient stayed away from usual day care?     
Has the patient stayed away from usual school?"                                                                    
Has the patient stayed away from usual day care / school / work? Not applicable                                         
For how many days has at least one parent been absent from work for childcare in this episode 
of participant's illness? 
Has the patient used other health services in this episode of illness?                                                  
Service used: Other medical specialist (e.g. paediatrician for children)                                                
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Service used: Pharmacist                                                                                                
Did the patient receive any other medication previously to this consultation?                                           
Medication: Pain or fever medication                                                                                    
Medication: Other                                                                                                       
What is the suspected diagnosis?                                                                                        
What is the suspected etiology?                                                                                         
Were additional blood tests performed?                                                                                  
Were additional tests performed?  
COVID-19 specific vaccine information collected?                                                                        
Pertussis, most recent approximate year the patient received the vaccine?                                               
Diphtheria, most recent approximate year the patient received the vaccine?                                              
Status other vaccinations?,  
Sex at birth                                                                                                           
Standard daytime childcare arrangement: Parent at home                                                                  
Standard daytime childcare arrangement: Creche/kindergarten                                                             
Standard daytime childcare arrangement: School                                                                          
Prior confirmed COVID-19?                                                                                               
Time test results were generated?                                                                                 
Time test results were received by care team?  

 

PRUDENCE 
 

Site name                                                                            
Sex                                                                                  
Indicate any other prescribed medication for this illness: Paracetamol and/or NSAIDS 
Indicate any other prescribed medication for this illness: Other                     
Indicate any other prescribed medication for this illness: None of the above         
Cardiovascular disease                                                               
Diabetes                                                                             
Chronic respiratory condition (e.g asthma, COPD)                                     
Hepatic, hematologic, neurologic or neurodevelopmental condition                     
Flu vaccination in the last year 
Does the participant have a POSITIVE SARS-CoV-2 test result for this illness episode?                                                    
If yes, 1st dose                                                                     
If yes, 2nd dose                                                                     
If yes, 3rd dose                                                                     
Pneumococcal vaccination in last five years                                          
Medical history of antibiotic allergy/intolerance                                    
Smoking                                                                              
Any Comorbidities? (completed automatically) Yes                                     
Antibiotic prescribing at this stage:                                                
Why was this decision made? Probable bacterial infection                             
Why was this decision made? Diagnostic test result (if randomized to test)   
Does the participant have a POSITIVE SARS-CoV-2 test result for this illness episode? 

Table 2: Pre-filtered covariates for randomization. 

 

2.1.3.2 Manual refining of the list 

One can first note that the majority of the 5 covariates identified prior to the analysis 
(sex, age, symptom, treatment, location) are included in one or two lists, only the age, 
excluded because continuous, cannot be found.  

In ADEQUATE, we suggest using site name, sex and age in the randomization. Although 
many symptoms and vaccines are returned, the antibiotic intake and smoking variables 
are absent from the shortlist. Examining the clinical data, we find that only 4 out of 49 
patients were given antibiotics and 1 patient was reported smoking, fractions too small 
for effective randomization. Fever, on the other hand is reported in all patients with 
different level of severity (8 mild, 13 moderate and 28 severe). It could be used as a 
general indicator of the infection gravity. 
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In PRUDENCE, we also suggest using site name, sex and age to randomize samples. This 
time, 26 out of 115 patients were prescribed antibiotics and 13 were reported smoking, 
making these two variables easily amenable to randomization. The only symptoms 
available in PRUDENCE are adverse events that only affect 3 patients.  

Despite being present in a small fraction of samples, both antibiotic intake (ADEQUATE) 
and adverse events (PRUDENCE) should be included in the randomization (manually) 
because their effect is too large to be disregarded. The selected covariates are 
summarized in the Table 3. 

ADEQUATE 
site name, sex, age, antibiotic intake 

PRUDENCE 
site name, sex, age, diabetes, obesity, COVID19, antibiotic intake 

Table 3: Selected covariates for randomization. 

 

2.2 DNA extraction & sequencing 
2.2.1 NP swabs (PRUDENCE) 

Nasopharyngeal (NP) swabs were collected using the DNA/RNA Shield Collection Tube 
w/Swab (Zymo Research). Before DNA extraction, 20µl of ZymoBIOMICS Spike-in Control 
II (Low Microbial Load) (Zymo research) were added to 400µl of sample. DNA extraction 
was performed with the ZymoBIOMICS DNA Miniprep kit (Zymo Research) according to 
manufacturer’s instructions, and DNA concentration was measured with Qubit® dsDNA 
HS Assay Kit (Invitrogen). 16S amplification was performed with the KAPA HiFi ReadyMix 
kit (KAPA Biosystems) targeting the V3-V4. Barcoded libraries were sequenced in a MiSeq 
instrument with the MiSeq Reagent Kit v2 (500 cycles) (Illumina). 

 

2.2.2 Stool samples (PRUDENCE) 

Stool samples were collected using the DNA/RNA Shield-Fecal Collection Tube (Zymo 
Research). Tube contents were mixed using a Bag Mixer MiniMix 100 (Interscience) in 
Stomacher 80 sterile bags (MLS) for 3 minutes at speed 9. Before DNA extraction, 20µl of 
ZymoBIOMICS Spike-in Control I (High Microbial Load) (Zymo Research) were added to 
400 µl of sample. DNA extraction was performed with the Fast DNA Spin Kit for Feces (MP 
Biomedicals) according to manufacturer’s instructions, and DNA concentration was 
measured with Qubit® dsDNA HS Assay Kit (Invitrogen). Finally, libraries were prepared 
with the Nextera® XT DNA Sample Preparation Kit (Illumina) and sequenced in a NextSeq 
instrument with the NextSeq 500/550 High Output kit v2.5 (300 cycles) (Illumina). 

 

2.2.3 OP swabs (ADEQUATE) 

Oropharyngeal (OP) swabs were collected using the DNA/RNA Shield Collection Tube 
w/Swab (Zymo Research). Before DNA extraction, 20µl of ZymoBIOMICS Spike-in Control 
II (Low Microbial Load) (Zymo research) were added to 400µl of sample. DNA extraction 
was performed with the Fast DNA Spin Kit for Feces (MP Biomedicals) according to 
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manufacturer’s instructions, and DNA concentration was measured with Qubit® dsDNA 
HS Assay Kit (Invitrogen). Finally, libraries were prepared with the Nextera® XT DNA 
Sample Preparation Kit (Illumina) and sequenced in a NextSeq instrument with the 
NextSeq 500/550 High Output kit v2.5 (300 cycles) (Illumina). 

 

2.3 Bioinformatic analyses post 16S sequencing of NP (PRUDENCE) 
samples 

Quality of the reads was assessed using FastQC v0.11.9 and quality trimming was 
performed with TrimGalore v0.6.4 using a quality threshold of 30. Trimmed reads were 
aligned to the SILVA database v.132 and clustered into operational taxonomical units 
(OTUs) using mothur v1.44.1. Sequencing error rate was assessed with mothur by 
incorporating a well-characterized mock community (D6300, Zymo Research), resulting in 
an average error rate of 0.67% (0.57-0.79%). Negative controls during extraction and 
library preparation were included and used to remove contaminants from the OTU table 
with decontam v.1.14.0. Rare taxa (<6 classified reads across entire dataset) were removed 
prior to further analysis. Shannon alpha diversity and Bray-Curtis dissimilarity matrix 
were calculated using Vegan 2.6.4. Differences in alpha-diversity between groups were 
analysed using ANOVA, and Adonis was used to evaluate variables influencing the 
community dissimilarity. DESeq2 v1.34.0 was used to investigate differentially abundant 
OTUs between timepoints and antibiotic treatment. 

 

2.4 Bioinformatic analyses post shotgun metagenomic sequencing of OP 
(ADEQUATE) and stool (PRUDENCE) samples 

2.4.1 Reads preprocessing & quality control 

The quality control workflow is presented in Figure 1. Briefly, the quality of the generated 
sequencing reads was assessed using FastQC (v0.11.9) (Andrews. 2010) with default 
parameters. Fastp (v0.23.4) (Chen et al. 2018) was then used to filter out low-quality reads, 
discarding reads with more than 5 N bases or those shorter than 15 bases after trimming. 

High-quality reads that passed filtering were then aligned to the host genome using 
Bowtie2 (v2.5.0) (Langmead et Salzberg. 2012). The human reference genome (T2T5-
CHM13v2.0, 2022) was used for this alignment. Reads aligning to the human genome, 
considered contamination, were discarded. 
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Figure 1: Data quality control, taxonomy analysis and resistance gene analysis workflow. 

 

2.4.2 Mapping and quantification 

Non-host reads were then aligned to the RefSeq PlusPF database for taxonomic 
classification using Kraken2 (v2.1.1) (Wood, Lu, et Langmead. 2019), followed by 
refinement with Bracken (v2.7) (Lu et al. 2017) to improve the accuracy of species-level 
abundance estimates. RefSeq PlusPF database contains archaea, bacteria, viral, plasmid, 
fungi, protozoa and Human. It is important to have the host genome included in the 
database in order to catch any human read that did not align in the previous step with 
bowtie2.  

The R decontam package was used to identify and remove contaminant species that were 
not truly present in the sampled community. This contaminating DNA can come from 
several sources and can be identified from negative control samples in which sequencing 
was performed on blanks without any biological sample added. We used the prevalence 
method which assumes that contaminants will be more prevalent in negative control 
samples compared to true biological samples.  

 

2.4.3 Resistance gene analysis 

Resistance gene identifier (RGI) v.6.0.3 was used to map reads against Comprehensive 
Antibiotic Resistance Database (CARD) database v.3.2.9 (McArthur et al. 2013). The 
command rgi bwt was used with the aligner bowtie2. AMR genes identified with less than 
100 mapped reads were filtered out.  

 

2.4.4 Normalization and variance partitioning 
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The taxa table was normalized using TMM (Robinson and Oshlack. 2010, EdgeR v4.2.0 
package), the resulting factors were then applied onto the resistance gene table. An 
alternative method, additive log-ratio (Compositions v2.0-8), which leverages spike-ins, 
was also applied and compared to TMM. Confounding effects were corrected using 
removeBatchEffect (Limma v3.60.3). 

Variance partitioning analysis was performed to evaluate the proportion of variance 
explained by each technical and clinical variable (variancePartition v.1.22.0). This step was 
carried out before and after correction of confounding effects to ensure the latter were 
properly adjusted for. 

 

2.4.5 Alpha & beta diversity 

Alpha and beta diversity coefficients are metrics derived from ecology. The former 
describes the composition of each sample independently, while the latter quantifies the 
(dis)similarities between groups of samples.  

Applied to metagenomics, alpha diversity provides information on richness (number of 
species) and evenness of a given sample. Richness is generally estimated as the number 
of species, with an additional corrective term to account for species that are rare (missed 
during sampling). Evenness indicates whether species are present in similar abundances 
or if, conversely, a small number of them dominate the biomass. Beta diversity measures 
the difference in bacterial composition between two groups of samples by first 
calculating pairwise distances between samples and then projecting these distances into 
a low-dimensional space. 

In this project, we used two standard measures of alpha diversity: the Chao estimator for 
richness and the Shannon index for evenness. The Bray-Curtis distance, combined with 
the Adonis test (also known as permutational MANOVA), were further chosen to calculate 
beta diversity and assess the significance of between group differences (Vegan R 
package, v2.6-6.1). 

 

2.4.6 Differential analysis 

Differential analysis was performed with limma-voom (Limma, v3.60.3), an approach well 
suited to longitudinal analysis due to its ability to account for intra-individual 
correlations. Unlike other methods, Limma effectively incorporates a random effect for 
patients, similar to a mixed-effects model. Limma-Voom combines the generalized linear 
models of Limma (moderated t-test based on pooling variance across features) with an 
estimation of the mean-variance relationship through a weighting of observations via 
Voom. 

Only features (taxa or resistant genes) passing background filters were retained, reducing 
the multiple testing correction (Benjamini and Hochberg) on the p-values. In the user 
manual, the authors recommend setting the threshold such that the mean-variance trend 
decreases monotonically. The values obtained here were log2(cpm) = 2.5 and 7.5 on the 
taxa and resistance gene datasets. 
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Limma-Voom requires the input data to be raw counts (from the alignment steps), which 
implies that confounding effects must be included in the model to be corrected. As 
mentioned earlier, the individual effect was modelled as a random effect, while the 
others were modelled as fixed effects. 

In this work, we conducted two types of comparisons: intra-group and inter-group. The 
intra-group comparison assesses the same individuals at two different time points, while 
the inter-group comparison contrasts two groups at a single time point, after adjusting 
for baselines (Figure 2). For instance, the inter-group comparisons between antibiotic and 
untreated patients at D7 is expressed as: (ATB_D7-ATB_D1)-(Untr_D7-Untr_D1). This 
“double contrast” approach ensures that the inter-group difference ATB_D7-Untr_D7 is 
unaffected by baseline heterogeneity between antibiotic and untreated groups. 

A feature (taxon or resistance gene) was deemed significant if the adjusted p-value was 
< 5% (Benjamini-Hochberg’s procedure) and |log₂(fold-change)| > 0.5. The relatively 
permissive threshold on log₂(fold-change) was chosen due to the limited number of 
findings in the study. Differential analysis results are provided in supplementary 
materials, enabling consortium members to refine the results using alternative 
thresholds. 

 

 

Figure 2: Illustration of intra and inter group comparisons used in Prudence. 

 

2.4.7 Longitudinal analysis 

Two approaches were considered to identify features significantly affected by the time. 
(i) A likelihood ratio test comparing two nested models, a full model and a reduced model, 
to assess whether the treatment induces changes in taxa abundance at any time point 
after baseline. The full model accounts for confounding effects and includes treatment, 
time factors, and their interaction, while the reduced model excludes the interaction. (ii) 
All significant taxa from intra-group differential analyses were pooled. The first approach 
identifies taxa with trajectories that differ between groups, while the second captures 
taxa that differ from baseline at one or more time points. Using Gaussian Mixture Model 
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(MClust package v6.1.1), an additional step of clustering was applied to group taxa 
according to their trajectories. 

 

3 Results 
3.1 PRUDENCE: Respiratory microbiota 
3.2 Sample collection 

Participants of the PRUDENCE trial (adults attending primary care or patients residing in 
long-term care facilities) were randomized to undergo standard care or rapid diagnostic 
testing for Influenza, Group A Streptococcus or C-Reactive Protein. Participants were 
approached for participation in the microbiology study, and those consenting provided 
nasopharyngeal (NP) samples at randomization, Day 7 and Day 28. Upon sample 
collection, they were frozen at -80°C until shipment to the UA biobank. In total, 309 
samples obtained from 113 patients were processed. 

 

3.2.1 Sequencing quality control 

Overall, 36171 OTUs were obtained, of which 100 were deemed as contaminants by 
decontam based on comparison to the negative controls used during extraction and 
library preparation. After rare taxa filtering, 2733 OTUs were retained for further analysis, 
and rarefaction curves showed that they microbial communities of most samples are well 
represented (Figure 3). 

 

Figure 3: Rarefaction curves showing the number of detected species at various 
sequencing depth, each curve representing a sample. 
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3.2.2 Diversity analysis 
3.2.2.1 Alpha diversity 

Alpha-diversity did not show significant differences between any of the studied groups, 
including timepoint, prior antibiotic treatment, antibiotic treatment at randomization 
visit, antibiotic treatment after first visit, country, site and gender (Figure 4). 

 

Figure 4: Alpha diversity. 

 

3.2.2.2 Beta diversity 

On the other hand, several variables represented a significant influence in community 
dissimilarity, including site (highest weight), country, gender, extraction batch and 
sequencing run (Figure 5). 

 

Figure 5: Beta diversity. 
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3.2.3 Differential analysis 

A small amount of OTUs was differentially abundant between patients treated with 
antibiotics and those untreated at each timepoint (Figure 6). At Day 1, 13 OTUs showed 
differential abundance, of which only OTU00003 (Staphylococcus) had more than 100 
average reads across the dataset. At Day 7, 15 OTUs showed differential abundance, of 
which only OTU00005 (Corynebacterium) and OTU00006 (Dolosigranulum) had more than 
100 average reads across the dataset. At Day 28, 8 OTUs showed differential abundance, 
of which only OTU00002 (Corynebacterium) had more than 100 average reads across the 
dataset. All these differentially abundant OTUs were more abundant in the untreated 
group. Especially relevant is the depletion of Corynebacterium and Dolosigranulum at Day 
7, after antibiotic treatment, as these are keystone taxa associated to health and lower 
recurrence of upper respiratory tract infections. 

 

Figure 6: Differential analysis. 

 

When inspecting the abundance of genera, it can be noticed that abundance of potential 
pathogens like Streptococcus, Haemophilus and Moraxella is overall low, and the 
nasopharyngeal microbial community is composed mainly of Corynebacterium, 
Dolosigranulum and Staphylococcus, with differences between countries and sites 
(Figure 7). 
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Figure 7: Relative abundance of the nasopharyngeal microbial community at the genus 
level. 

 

The genera distribution of the mock communities shows a large proportion of OTUs 
misclassified as Other, indicating a large presence of spurious results (Figure 8). 
Additionally, Listeria could only be classified correctly in 4/17 positive controls, 
corresponding to decreased reads classified as Enterobacteriaceae_unclassified, which 
are associated to Salmonella. Additionally, one positive control showed a low number of 
reads, mostly classified as Other, indicating issues during extraction or library 
preparation that need to be further investigated. Overall, positive control taxonomy 
distribution is distinct from the rest of samples, clustered in sample Total. 

 

Figure 8: Genera distribution of the mock communities. 
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Regarding negative controls, after contaminant removal, taxonomy composition was 
distinct form the actual samples. Besides other genera with low number of counts, usual 
members of the negative controls included Acinetobacter, Enterobacteriaceae, 
Escherichia, Herbaspirillum, Pelomonas, Pseudomonas and Ralstonia, which are not 
expected in nasopharyngeal environment (Figure 9). 

 

Figure 9: Genera distribution of the negative controls. 

 

3.3 PRUDENCE: Intestinal microbiota 
3.3.1 Evaluation of data quality 
3.3.1.1 Sample distribution 

A total of 330 stool samples were collected from 102 unique patients across 5 sites (GE-A, 
IT-L, IT-M, UK-C, UK-H) at 4 time points: Day 1, Day 7, Day 28, and Day 90 (denoted as D1, 
D7, D28, and D90 hereafter). On average, 3.2 time points were sampled per patient, with 
13 patients missing the baseline (D1) sample. A maximum of 22 samples could be 
extracted simultaneously, resulting in 15 extraction batches, which were then pooled into 
8 sequencing runs. To detect and remove potential contaminants, a negative control was 
included in each extraction batch. 

The 330 samples were randomized in a way that confounding variables were uniformly 
distributed across extraction batches, making thus their correction possible in 
downstream analyses. The workflow used to select clinical covariates for randomization 
led to the selection of site, sex, age, diabetes, obesity, COVID-19 test, visit (time point) 
and antibiotic intake. The last two variables are the main variable of interest, the other 
are confounders that were adjusted for. Figure 10 illustrates that the distribution of these 
8 clinical variables is comparable to that of the full dataset, ensuring thus that both 
technical and clinical effects can be accurately estimated.  
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Table 4 summarises the sample distribution across time points and antibiotic classes. 
Two classes, co-amoxiclav and “Other”, contain one sample per time point and were 
therefore removed from downstream analyses. Similarly, quinolone presents a single 
sample at baseline making this class not amenable to differential analysis. 

Note that some patients showed conflicting meta data, including:  

- An antibiotic was prescribed but intake was not recorded at any visit (patients IT-
M-004, IT-M-021 and IT-M-023). Although IT-M-004 might just be a case of delayed 
therapy, so prescribed antibiotic would be “No” and duration “None taken” 

- No antibiotic was prescribed nor recorded, but every visit shows antibiotic intake 
(patient IT-L043) 

 

 

Figure 10: Sample randomization into extraction batches. Each barplot shows, for a given 
variable, the sample distribution in the 15 batches and the full dataset (observed 
frequencies, the rightmost category). 

 

 

 

Table 4: Sample distribution across time points and antibiotic classes. 
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3.3.1.2 Sequencing quality control 

Sequencing produced high-quality reads in each sample, with a Phred score of Q30, 
indicating excellent base call accuracy. A Q30 score corresponds to 99.9% accuracy, 
meaning there is only a 0.1% chance of an incorrect base call.  

Around 10 million sequencing reads were generated per samples (Figure 11, top). No 
human DNA contamination was detected in the samples. Only two samples—IT-M-
020_Day1 and IT_L_045_Day7—had fewer than 1 million microbial reads and were 
considered outliers due to their significantly lower read counts. 

Thanks to the high sequencing depth and absence of host contamination in all the 
samples, the rarefaction curves reach a plateau (Figure 11, middle). This indicates that, 
with the current sequencing depth, all species potentially present in the samples could 
be detected.  

A further indicator was used to investigate the number of detected species relative to the 
sequencing depth (Figure 11, bottom). Iterations between differential analysis and this 
scatter plot allowed to flag 5 additional outliers that, when included, led to significant 
results at log2(Fold-Change)=0 (IT-L-030_Day28, IT_L_019_Day1, IT-L-032_Day7, 
IT_L_032_Day1, IT_L_015_Day7 ). 
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Figure 11: (top) Number of generated reads per sample. Samples are grouped by 
extraction batch. (middle) Rarefaction curves showing the number of detected species at 
various sequencing depth, each curve representing a sample. (bottom) Detected taxa 
versus total counts (sequencing depth). 
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3.3.1.3 Spike-ins and contaminating species 

 

Figure 12: (top) Barplot of abundance of three spike-in species in the samples. Samples are 
grouped by batch. (bottom) Barplot of abundance of contaminant species in the samples. 
Samples are grouped by batch. 

 

Two spike-in species, Imtechella halotolerans and Allobacillus halotolerans, were added 
to each sample to monitor potential biases during DNA extraction or library preparation. 
The expected ratio between these species was 10:1, with Imtechella halotolerans being 10 
times more abundant than Allobacillus halotolerans. Overall, the total abundance of 
these spike-in species was relatively consistent and low across samples, except for a few 
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cases where their abundance exceeded 25% (Figure 12, top). Notably, in sample 
IT_L_019_Day1, spike-in species accounted for 94% of the total reads. These spike-in 
species were removed prior to downstream analysis to avoid skewing the results. 

A high number of species have been detected in the negative control samples even with 
more stringent threshold of 0.1. Those contaminant species have been removed from the 
following analysis (Figure 12, bottom). 

 

3.3.1.4 Data normalization 

Two normalization methods were evaluated in this study: TMM, a widely used approach 
for NGS data and default in Limma-Voom, and additive log-ratio (ALR), which leverages 
spike-in controls. A moderate correlation was found (R² = 0.6, Figure 13), suggesting that 
normalization choice may significantly impact downstream analyses. In the absence of 
orthogonal data to favour one method over the other, differential analyses were 
conducted using both methods. 

 

Figure 13: TMM versus ALR normalization scatterplot. 

 

3.3.1.5 Variance partitioning 

The variance partitioning step provides a visual way to examine the relative contribution 
of confounders and variables of interest to the overall variance. It can first be noted that 
the residual variance is high, indicating that the majority of the variance remains 
unexplained by the clinical and technical covariates. Before correction, site, age and 
extraction factors have the largest effect. After adjusting for confounders, their 
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contribution becomes negligible, leaving only the effects of antibiotics and visit remain 
(Figure 14). 

 

Figure 14: Variance partitioning before and after correction of confounding effects. 

 

3.3.2 Diversity analysis 
3.3.2.1 Alpha diversity 

Richness and evenness were computed with the Chao estimator and Shannon index for 
each sample. Both metrics, like the read counts, were adjusted for confounding effects. 
A Student's t-test was performed at each time point to compare antibiotic-treated groups 
(analysed both by individual classes and combined) with the untreated group. The Co-
amoxiclav and 'Other' antibiotic classes were excluded due to limited sample size. It is 
expected that antibiotic treatments induce a microbiota dysbiosis, impacting thus the 
number of species and their relative abundance. Figure 15 reveals that no difference is 
significant when considering all antibiotic classes together (p-values > 5%). It can 
nevertheless be noticed that while the median richness is higher in antibiotic-treated 
patients at day 1 and 90, an opposite trend is observed for evenness at the same time 
points. At the class level, only one difference is found significant at D7 between macrolide 
and untreated patients (p-value=2.5%). Although quinolone displays a large effect at 
baseline and D28, it is not significant due to small sample size. 
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Figure 15: Richness and evenness boxplots grouped (top) or stratified by antibiotic class 
(bottom). A Student's t-test was performed at each time point to compare antibiotic-
treated and untreated patients. 

 

3.3.2.2 Beta diversity 

To compute the beta diversity, the Bray-Curtis distance matrix was built on the 
normalized, adjusted counts. The Adonis test was run to test whether there is a difference 
in the centroid and dispersion of the groups in the multivariate space. Although 
significant differences were detected at the antibiotic level across all time points, the 
effect sizes are modest, consistent with the findings with alpha diversity. By contrast, all 
p-values exceed 5% at the class level, despite substantial different ellipse shapes and 
directions. Overall, beside the Quinolone class whose centroid appears slightly shifted 
from the other groups at D7, no clear trend can be deduced from the beta diversity (Figure 
16). 
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Figure 16: Beta diversity calculated using Bray-Curtis distance, shown at the antibiotic 
(top) and class (bottom) levels. An Adonis (PERMANOVA) was performed at each time point 
to compare antibiotic-treated and untreated patients. 

 

3.3.3 Differential and longitudinal analyses in taxa 

This section presents intra- and inter-group comparisons at the taxon level, considering 
5 different response variables: 

- Antibiotic versus untreated 
- 3 Individual antibiotic (narrow and broad spectrum penicillin, macrolide) classes 

versus untreated 
- COVID-19 positive versus negative test 

For each comparison, a volcano plot and a result table with average expression in 
log2(cpm), log2(fold-change), p-values, were generated and are available in 
supplementary materials (Supplementary Tables 1-6, Figures 1-6).  

 

3.3.3.1 Most abundant taxa 

Before getting into differential analyses, this section describes the most abundant taxa. 
Out of a total of 7291 taxa detected in all samples, a handful of species (25 shown in Figure 
17) make up approximately half of the biomass. Out of the 17 genera detected in these 
most abundant bacteria, 5 belong to genus previously described as dominant in the 
human gut microbiota (Bacteroides, Prevotella, Alistipes, Akkermansia, Oscillibacter, 
Clostridium, Faecalibacterium, Eubacterium, Ruminococcus, Roseburia, and 
Bifidobacterium) (Segata et al. 2012; Tremaroli et Bäckhed. 2012). Of note, none of these 
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top 25 most abundant bacteria are found differentially abundant in the following 
analyses. 

 

Figure 17: Relative abundance of the top 25 taxa stratified grouped by treatment. 

 

3.3.3.2 Background noise determination 

The authors of Limma-Voom recommend adjusting the background noise threshold so 
that the variance strictly decreases with the mean abundance. In case of bell-shaped 
curve, the left arm of the curve indicates a reduction in variance at low abundance levels, 
primarily due to the high number of zeros. Figure 18 reveals that the mean-variance trend 
resembles a bell-shaped curve, with many taxa at low abundance levels. Applying a 
background noise threshold of log2(cpm) > 2.5 resulted in the removal of 3953 taxa out of 
7291. 

 

Figure 18: Mean-variance scatterplot. Each dot is the estimated mean and sqrt (standard 
deviation) of a given taxon. The red curve is a regression spline that estimate the overall 
mean-variance relationships. All taxa with mean log2(cpm) <2.5 were excluded from 
differential analyses. 
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3.3.3.3 Comparison at baseline 

An initial comparison was conducted at baseline on the 5 variables of interest. Although 
many taxa showed |log2(fold-change)| values up to 5 and were significant before multiple 
testing correction (Figure 19), only 2 remained significant after correction in antibiotic 
and macrolide inter-group comparisons (P. massiliensis and A. propionicum respectively, 
see Table 5). In contrast to the antibiotic and the 3 classes comparisons that feature a 
large fraction of taxa with |log2(fold-change)|>1, the COVID-19 comparison includes a 
handful of taxa that exceed this threshold, in line with the weak COVID-19 effect estimated 
in variance partitioning. Of note, Ruminococcus sp. FMB CY1 presents a large log2(fold-
change) of 9.2 in broad spectrum penicillin, without being significant though. 

On top of the top10 most significant taxa, Table 5 also includes 5 taxa commonly studied 
in respiratory related pathologies (Pseudomonas aeruginosa, Streptococcus pneumoniae, 
Klebsiella pneumoniae, Haemophilus influenzae, Staphylococcus aureus). None of those 
5 taxa reached the adjusted p-values = 5% threshold (full list available in Supplementary 
Figure 1-3). 

 

Figure 19: Volcano plot showing taxa with largest differences in the 5 comparisons of 
interest at baseline. Each point represents a taxon, with log₂(fold-change) on the x-axis 
and -log₁₀(p-value) on the y-axis. The horizontal and vertical dotted lines represents the 
(unadjusted) p-value=5% and |log2(fold-change)|<1 thresholds respectively. 
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Table 5: Differential analysis results at baseline in antibiotic and macrolide inter-group 
comparisons. Shown are the log₂(fold-change), average abundance (log₂CPM), raw and 
adjusted p-values associated with 5 taxa of interest in respiratory pathologies and the 
top10 taxa. 

 

3.3.3.4 Intra-group comparisons in patients treated with antibiotics 

Unlike inter-group comparisons at baseline that resulted in only 2 significant taxa, intra-
group comparisons led to 67, 2, and 3 species showing significant changes at D7, D28, and 
D90 respectively in the narrow-spectrum penicillin comparison—all exhibiting decreased 
abundance relative to baseline, as illustrated by the leftward shift in the volcano plots 
(Figure 20). These significant results should however be interpreted with caution given 
that D7, the time point with the largest number of significant taxa, consists of 2 samples 
only (see Table 4). Finally, no significant changes were detected in the 2 other classes or 
when taking the classes altogether. 
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Figure 20: Narrow spectrum ampicillin intra-group comparisons. Volcano plots (top); result 
table associated with taxa of interest in respiratory related pathologies and top10 
differentially abundant taxa (bottom). 

 

3.3.3.5 Intra-group comparisons in untreated patients 

We next examined whether differences exist between baseline and subsequent time 
points (D7, D28, and D90) in untreated patients. Only a small fraction of taxa had an effect 
size greater than |log₂(fold-change)| = 1, and the lowest adjusted p-value was 0.52, 
indicating that time had very little impact on the microbiota of untreated patients 
(Supplementary Table 1, Figure 1). Consequently, inter-group comparisons with untreated 
patients effectively reduce to intra-group comparisons. For instance, the inter-group 
comparisons between antibiotic and untreated patients at D7 is expressed as: (ATB_D7-
ATB_D1)-(Untr_D7-Untr_D1). Since the second term is nearly zero, this inter-group 
comparison is reduced to the antibiotic intra-group comparison. This point is supported 
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by the scatterplot of intra versus inter-group log2(fold-change) estimates which shows a 
high correlation in the antibiotic versus untreated comparison (Figure 21). For this reason, 
inter-group comparisons based on untreated patients were excluded from further 
analysis. 

 

 

Figure 21: Scatterplot of log2(fold-change) estimated in antibiotic intra (x-axis) versus 
inter (y-axis) group comparisons. The obtained corrections motivated us to exclude inter-
group comparisons. 

 

3.3.3.6 Intra and inter-group comparisons in COVID-19 patients 

So far, COVID-19 infection has been regarded as a confounding factor that could 
potentially hinder the estimation of antibiotic treatment effects. In this paragraph, we 
shift the focus from antibiotic to COVID-19 infection, treating COVID-19 as the primary 
clinical variable of interest, while considering antibiotic intake as confounding factor. 
Among the 102 patients enrolled in Prudence, 18 tested positive for COVID-19. Both intra- 
and inter-group comparisons revealed no taxa that were significantly differentially 
abundant over time or between COVID-19 status groups (Supplementary Figure 3 and 
Table 3). Again, this result is in line with the variance partitioning analysis where COVID-
19 (POS_TEST) has the smallest median explained variance (Figure 14). 

 

3.3.3.7 Longitudinal analysis 

Two approaches were employed to identify bacteria showing significant changes over 
time within clinical groups, thereby offering insights into bacterial dynamics. The first 
approach (DESeq2 LRT) targets taxa with trajectories that differed between groups (e.g., 
antibiotic-treated versus untreated), while the second (Limma pairwise TPs) focuses on 
taxa with significant changes from baseline at one or more time points.  
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In line with the intra-group comparisons, Table 6 shows that most of the significant taxa 
are found in narrow spectrum penicillin using Limma pairwise TPs. On the other hand, 
only a handful of taxa were identified with DESeq2 LRT. 

 

 

Table 6: Number of significant taxa found in longitudinal analysis using limma pairwise 
TPs and DESeq2 LRT in the 5 clinical comparisons of interest. 

 

For a given comparison, no overlap was observed between the two approaches, indicating 
that each method identified distinct patterns. Gaussian mixture clustering was applied to 
the 78 taxa identified in narrow-spectrum penicillin using Limma, resulting in a single 
cluster. This cluster shows a decreased abundance at D1 followed by a return to baseline 
by D28 and D90. Examining the first 10 taxa alphabetically (Figure 22) reveals minimal 
variation in other groups, suggesting these taxa are specifically sensitive to narrow-
spectrum penicillin (full list available in Supplementary Figure 10). As noted in section 
3.3.3.4, these findings should however be interpreted with caution and further validated 
given that they are based primarily on two samples at D7. 
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Figure 22: Trajectories of the first 10 bacteria (in alphabetical order) identified as 
significant in narrow spectrum penicillin with Limma Pairwise TP. 
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Figure 23: Trajectories of the 4 bacteria identified as significant in macrolide DESeq2 LRT 
(top 3 taxa) and Limma Pairwise TP (bottom taxon). 

 

Looking at the 4 taxa found in macrolide group (Figure 23), an opposite trend can be 
observed where a peak occurs at D1-D28 and a return to baseline at D90. This pattern was 
found both by DESeq2 LRT (top 3 taxa) and Limma (bottom taxon). 
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Figure 24: Trajectories of the 7 bacteria identified as significant in COVID-19 comparison 
using DESeq2 LRT. 

 

Finally, in the COVID-19 comparison, beside a downward trend observed in 3 taxa, little 
differences can be noticed between positive and negative patients (Figure 24). This result 
is not unexpected since COVID-19 (POS_TEST) explained little variation in Figure 14 and 
no taxa were found differentially abundant in the COVID-19 comparisons. 
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3.3.3.8 Additive log-ratio normalization 

In this section we evaluate the impact of the normalization method (TMM versus ALR) on 
differential analysis results. Table 7 shows the number of significant taxa identified in the 
clinical intra-group comparisons of interest. Despite a moderate correlation found 
between the two methods (R2=0.6, Figure 13), the number of significant taxa is highly 
similar. Few, if any, significant taxa were found in the antibiotic vs untreated and COVID-
19 comparisons, while most differentially abundant taxa were identified in the narrow 
spectrum penicillin group. 

 

 

Table 7: Number of significant taxa found with TMM and ALR normalizations in the clinical 
comparisons of interest. 

 

We then sought to determine whether the lists of significant taxa were similar across 
methods. To do so, Venn Diagrams were generated for intra-group comparisons, where 
significant taxa were identified in both methods. Figure 25 shows that across all 
comparisons, the intersection is large, with 3 out of 4 cases showing that most, if not all 
ALR results are encompassed within the TMM taxa. Depending on the reader’s interest 
into TMM or ALR, differential analysis results are available for both methods in 
supplementary materials. 
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Figure 25: Intersections between taxa identified as significant in narrow spectrum 
penicillin intra-group comparisons. 

 

3.3.4 Differential and longitudinal analyses in resistance genes 

In this section, we repeat the previous differential and longitudinal analyses at the 
resistance gene level. The full tables and associated Volcano plots are available in 
Supplementary Tables 7-9 and Figures 7-9. 

 

3.3.4.1 Background noise determination 

The background noise threshold was adjusted to ensure a monotonically decreasing 
mean-variance trend. As previously observed at the taxa level, Figure 26 shows that the 
mean-variance trend resembles a logarithmic curve, with many genes at low abundance. 
Setting a background noise threshold of log2(cpm) > 2.5 resulted in the removal of 1,205 
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out of 1,331 genes. This stringent filtering reflects the matrix's high sparsity, with 
approximately 90% of entries being zeros, as illustrated in the histogram below. 

 

 

Figure 26: Mean-variance scatterplot (left). All taxa with mean log2(cpm) <2.5 were 
excluded from differential analyses. Histogram of raw counts in the resistance gene matrix 
(right). 

 

3.3.4.2 Comparison at baseline 

Consistent with the results at the taxa level, differential analyses at baseline across the 
five comparisons (Figure 27) identified only one significant resistance gene, vanY in vanF, 
in macrolide (top 10 genes are shown in Table 8). Despite weak effects at baseline in all 
comparisons, it can further be noted that the range of log2(fold-change) is notably smaller 
in the COVID-19 than the other 4 comparisons.  
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Figure 27: Volcano plot showing taxa with largest differences in the 5 comparisons of 
interest at baseline. Each point represents a resistant gene, with log₂(fold-change) on the 
x-axis and -log₁₀(p-value) on the y-axis. The horizontal and vertical dotted lines represents 
the (unadjusted) p-value=5% and |log2(fold-change)|<1 thresholds respectively. 

 

 

Table 8: Top resistant genes found at baseline in macrolide versus untreated comparison. 
Shown are the log₂(fold-change), average abundance (log₂CPM) and adjusted p-values. 
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3.3.4.3 Intra-group comparisons 

In contrast to the numerous significant taxa found in intra-group comparisons, only 5 
resistant genes reached significance (Table 9, Table 10) in narrow spectrum penicillin 
(vanG in D90-D1, vanY gene in vanG cluster, vanR gene in vanD cluster in D28-D7) and 
macrolide (vanY gene in vanF cluster in D90-D1 and D90-D7, APH(6)-Id in D90-D7) intra-
group comparisons. 

 

 

Table 9: Number of genes found significant in intra-group comparison across the 5 clinical 
comparisons of interest. 

 

 

Table 10: Differential analysis results in narrow spectrum penicillin and macrolide intra-
group comparisons. Shown are the log₂(fold-change), average abundance (log₂CPM), raw 
and adjusted p-values associated with the top10 genes. 
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3.3.4.4 Intra versus inter group comparisons 

Intra- and inter-group log2(fold-change) values were then compared in the antibiotic 
versus untreated comparison. As noted earlier on taxa, the two types of comparisons are 
highly similar at the gene level (Figure 28) due to little variation in untreated patients 
along the time. For this reason, inter-group comparisons based on untreated patients 
were again excluded from further analysis.  

 

 

Figure 28: Scatterplot of log2(fold-change) estimated in antibiotic intra (x-axis) versus 
inter (y-axis) group comparisons. The obtained corrections motivated us to exclude inter-
group comparisons. 

 

3.3.4.5 Longitudinal analysis 

Reflecting the intra-group comparisons, Table 11shows that the 5 significant genes are 
found in narrow spectrum penicillin and macrolide using Limma pairwise TPs. No 
additional genes are uncovered by the DESeq2 LRT approach. 

 

 

Table 11: Number of significant genes found in longitudinal analysis using limma pairwise 
TPs and DESeq2 LRT in the 5 clinical comparisons of interest. 
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Unlike what was observed at the taxa level, these significant genes show large variations 
along the time in all 3 antibiotics (Figure 29). Only untreated patients display little 
variation. The 3 significant genes identified in narrow-spectrum penicillin exhibit distinct 
patterns: vanG decreases steadily over time, while vanY and vanR peak at D7. In contrast, 
vanY and APH(6)-Id in the macrolide treatment show a consistent upward trend over time. 
This pattern could be consistent with the development of a resistant strain. 

 

 

Figure 29: Trajectories of the 5 genes significant identified in narrow spectrum penicillin 
(top) and macrolide (bottom) with Limma Pairwise TP. 

 

 

 

 

 



 

Version 01    45 

3.4 ADEQUATE: Respiratory microbiota 
3.4.1 Evaluation of data quality 
3.4.1.1 Sample distribution 

A total of 86 oropharyngeal samples were collected from 49 unique patients across 5 sites 
(SP-P-01, GR-P-01, GE-P-03, SW-P-01, UK-P-01) at 2 time points: Day 0 and Day 30 (denoted 
as D0 and D30 hereafter). On average, 1.8 time points were sampled per patient, with 12 
patients missing the Day 30 sample. A maximum of 22 samples could be extracted 
simultaneously, resulting in 4 extraction batches, which were then pooled into 2 
sequencing runs. To detect and remove potential contaminants, a negative control was 
included in each extraction batch. 

The 86 samples were randomized in a way that confounding variables were uniformly 
distributed across extraction batches, making thus their correction possible in 
downstream analyses. The workflow used to select clinical covariates for randomization 
led to the selection of site, sex, age, fever, obesity (BMI), visit (time point) and antibiotic 
intake. The last two variables are the main variable of interest, the other are confounders 
that were adjusted for. Figure 30 illustrates that the distribution of these 7 clinical 
variables is comparable to that of the full dataset, ensuring thus that both technical and 
clinical effects can be accurately estimated. Table 12summarises the sample distribution 
across time points and treatments. 

 

 

 

Figure 30: Sample randomization into extraction batches. Each barplot shows, for a 
given variable, the sample distribution in the 4 batches and the full dataset (observed 
frequencies, the rightmost category). 
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Table 12: Sample distribution across time points and treatments. 

 

3.4.1.2 Sequencing quality control 

Sequencing produced high-quality reads in each sample, with a Phred score of Q30, 
indicating excellent base call accuracy. A Q30 score corresponds to 99.9% accuracy, 
meaning there is only a 0.1% chance of an incorrect base call.  

However, the number of sequencing reads generated varied across samples, with some 
containing fewer than 1 million reads. Additionally, the proportion of human reads was 
highly variable, with some samples containing up to 98% human reads, while others were 
composed entirely of microbial reads (Figure 31). The presence of human reads is 
expected in swab samples, but 36 samples had fewer than 1 million microbial reads 
(Supplementary Table 10), limiting the amount of microbial information available for 
analysis and comparison with other samples. These samples were flagged as cautionary 
due to their limited data. 

 

 

Figure 31: Number of generated Host and microbial reads per sample. Samples are 
grouped by batch. 

 

Due to the low sequencing depth and/or high levels of host contamination in many 
samples, the rarefaction curves did not reach a plateau (Figure 32). This indicates that, 



 

Version 01    47 

with the current sequencing effort, not all species present in the samples—particularly 
those of low abundance—could be detected. However, it is still feasible to focus on the 
most abundant bacteria, which are well represented in the data, to draw meaningful 
insights. 

 

Figure 32: Rarefaction curves showing the number of detected species with various 
sequencing depth. Each curve represents a sample. 

 

3.4.1.3 Spike-ins and contaminating species 

Three spike-in species were added to each sample: Truepera radiovictrix, Imtechella 
halotolerans, and Allobacillus halotolerans. By comparing the relative abundance of 
these organisms in the sequencing data, potential biases during DNA extraction or library 
preparation can be detected. The expected ratio is 10:1:1, with Truepera radiovictrix being 
10 times more abundant than Imtechella halotolerans, and Imtechella halotolerans being 
10 times more abundant than Allobacillus halotolerans. However, Allobacillus was largely 
absent from the samples, and the abundances of Truepera radiovictrix and Imtechella 
halotolerans were nearly identical (Figure 33). Nevertheless, the total abundance of those 
spike-in species was relatively homogenous between the samples. The spike-in species 
were removed before the downstream analysis. 
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Figure 33: Barplot of abundance of three spike-in species in the samples. Samples are 
grouped by batch. 

 

18 species have been detected in the negative control samples and therefore have been 
removed from the following analysis (Figure 34).  

 

Figure 34: Barplot of abundance of contaminant species in the samples. Samples are 
grouped by batch. 
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3.4.1.4 Workflow validation with a mock sample 

In order to validate the wet lab as well as the taxonomic classification workflow, we used 
a mock sample with well-defined mock community of microbes with known abundances. 
The mock samples comprised of 10 different species to mimic the human gut microbiome. 
All bacteria were detected with a similar abundance to the expected ones (Figure 35). The 
observed abundance of some gram-negative species seemed to slightly exceed the 
expected abundance while the abundance of gram-positive species seemed to be slightly 
lower than expected. These discrepancies are known and are due to the tough-to-lyse 
gram-positive bacteria leading to an under-representation of the latter and an over-
representation of gram-negative bacteria.  Therefore, the wet-lab and dry-lab workflow 
are validated.  

 

 

Figure 35: Barplot of the expected and observed abundance of the 10 bacteria present in 
the mock sample. 

 

3.4.1.5 Data Normalization and sample filtering 

TMM normalization, a widely used approach for NGS data and the default in limma-voom, 
was applied in this analysis. This method trims extreme values before calculating 
normalization factors, so it requires each sample to contain a substantial fraction of non-
zero counts to be effective. Rather than excluding the 36 samples with fewer than 1 million 
reads, samples with fewer than 10% non-zero features (taxa or resistance genes) were 
instead excluded to ensure reliable normalization. Overall, 71 samples were retained in 
the following analyses (Table 13). 
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Table 13: Sample distribution after filtering. 

 

3.4.1.6 Variance partitioning 

The variance partitioning step provides a visual way to examine the relative contribution 
of confounders and variables of interest to the overall variance. It can first be noted that 
the residual variance is high, indicating that the majority of the variance remains 
unexplained by the clinical and technical covariates (Figure 36). Before correction, site 
and extraction batch factors have the largest effect. After adjusting for confounders, their 
contribution becomes negligible, leaving only the effects of antibiotics and visit remain. 
Of note, after correction, a handful of taxa still exhibit explained variance associated with 
the confounding variable. These taxa have extremely low abundance; removing them 
results in an explained variance of zero. 

 

 

Figure 36: variance partitioning before and after correction of confounding effects. 

 

3.4.2 Diversity analysis 
3.4.2.1 Alpha diversity 

Richness and evenness were computed with the Chao estimator and Shannon index for 
each sample. Both metrics, like the read counts, were adjusted for confounding effects. 
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A Student's t-test was performed at each time point to compare antibiotic versus 
untreated patients. It is expected that antibiotic treatments induce a microbiota 
dysbiosis, impacting thus the number of species and their relative abundance. Figure 37 
actually reveals that no difference is significant for both richness and evenness indicators 
(p-values > 5%). It can nevertheless be noticed that while the median richness and 
evenness are higher at D0 in antibiotic-treated patients, an opposite trend is observed 
at D30. This latter observation is in line with the idea that antibiotics decrease diversity 
and evenness by suppressing or eliminating certain species. This creates an imbalance, 
with some resistant or unaffected species becoming more dominant.  

 

 
3.4.2.2 Beta diversity 

To compute the beta diversity, the Bray-Curtis distance matrix was built on the 
normalized, adjusted counts. The Adonis test was run to test whether there is a difference 
in the centroid and dispersion of the groups in the multivariate space. Although no 
significant difference was detected at either time point, a modest effect size can be 
observed at D30, suggesting a potential effect of antibiotics (Figure 38).  

Figure 37: Richness and evenness boxplots. A Student's t-test was performed at each time 
point to compare antibiotic-treated and untreated patients. 
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3.4.3 Differential analyses in taxa 

This section presents antibiotic versus untreated intra- and inter-group comparisons at 
the taxon level. For each comparison, a volcano plot and a result table with average 
expression in log2(cpm), log2(fold-change), p-values, were generated and are available in 
supplementary materials (Supplementary Table 11 and Figure 11).  

 

3.4.3.1 Most abundant taxa 

Before getting into differential analyses, this section describes the most abundant taxa. 
Out of a total of 7919 taxa detected in all samples, a handful of species (25 shown in Figure 
39) make up approximately half of the biomass. Out of the 14 generea detected in these 
most abundant bacteria, 6 belong to 7 genus previously described as dominant in the 
human oropharyngeal microbiota (Streptococcus, Haemophilus, Neisseria, Veillonella, 
Prevotella, Rothia, Actinomyces, (Bogaert et al., 2011; de Steenhuijsen Piters. 2016). Of 
note, none of these top 25 most abundant bacteria are found differentially abundant in 
the following analyses, which is consistent with the observed high inter-individual 
variability. 

 
 
 
 
 

Figure 38: Beta diversity calculated using Bray-Curtis distance. An Adonis (PERMANOVA) 
was performed at each time point to compare antibiotic-treated versus untreated 
patients. 
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3.4.3.2 Background noise determination 

The authors of Limma-Voom recommend adjusting the background noise threshold so 
that the variance strictly decreases with the mean abundance. In case of bell-shaped 
curve, the left arm of the curve indicates a reduction in variance at low abundance levels, 
primarily due to the high number of zeros. Figure 40 reveals that the mean-variance trend 
resembles a log curve, with many taxa at low abundance levels. Applying a background 
noise threshold of log2(cpm) > 2.5 resulted in the removal of 6275 taxa out of 7919. 

Figure 39: Relative abundance of the top 25 taxa stratified grouped by treatment. 

Figure 40: Mean-variance scatterplot. Each dot is the estimated mean and sqrt(standard 
deviation) of a given taxon. The red curve is a regression spline that estimate the overall 
mean-variance relationships. All taxa with mean log2(cpm) <2.5 were excluded from 
differential analyses. 
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3.4.3.3 Comparisons at baseline  

An initial comparison was conducted at baseline. Although many taxa showed large 
|log2(fold-change)| values (up to 4) and were significant before multiple testing 
correction, none remained significant after correction (Figure 41). This result is in line 
with the absence of differences observed in beta diversity at D0. Although the results are 
not statistically significant, taxa with the largest log2(fold-change) tend to have higher 
abundance in the antibiotic group. 

 

3.4.3.4 Intra-group comparisons 

We next investigated whether differences between D30 and baseline exist in both 
antibiotic-treated and untreated patients. Figure 42 reveals that the range of log2(fold-
change) and p-values is substantially larger in the antibiotic group, indicating a stronger 
effect. While no taxa reach significance in the untreated group, a trend toward negative 
log2(fold-change) suggests a decline in the abundance of certain species. In the antibiotic 

Figure 41: Volcano plot showing taxa with largest differences between antibiotic and 
untreated patients at baseline (left). The horizontal and vertical dotted lines represents the 
(unadjusted) p-value=5% and |log2(fold-change)|<1 thresholds respectively. Differential 
analysis results at baseline (right). Shown are the log₂(fold-change), average abundance 
(log₂CPM), raw and adjusted p-values in  the top10 taxa. 

Taxa name logFC AveExpr adj.P.Val

Corynebacterium.durum 3,941 4,782 0,867

Capnocytophaga.leadbetteri 3,652 8,715 0,939

Capnocytophaga.sp..oral.taxon.323 3,166 4,236 0,939

Capnocytophaga.sp..FDAARGOS_737 3,488 8,797 0,939

Capnocytophaga.sp..oral.taxon.864 3,051 4,517 0,939

Actinomyces.sp..oral.taxon.171 3,092 4,942 0,939

Capnocytophaga.sp..oral.taxon.878 2,731 7,055 0,994

Abiotrophia.defectiva 2,417 7,673 0,997

Vibrio.campbellii 2,232 0,171 0,997

Treponema.sp..OMZ.838 2,907 1,391 0,997
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group, three bacteria - Rothia dentocariosa, Candidatus Nanosynbacter, and 
Streptococcus periodonticum - show significant negative log2(fold-change), reflecting a 
decrease in abundance at D30. Considering that a limited number of patients received 
antibiotics (Table 13), it is plausible that more significant bacterial changes could emerge 
in a larger study. 
 

  

3.4.3.5 Inter-group comparison at Day 30 

The inter-group comparison between antibiotic-treated and untreated patients is 
represented as (ATB_D30 - ATB_D0) - (Untr_D30 - Untr_D0). Given that the intra-group 
difference in the antibiotic group is greater than that in the untreated group, the inter-
group comparison primarily reflects changes seen in the antibiotic-treated group. The 
examination of the most differentially abundant taxa (Figure 43) reveals that five of the 
top ten species are common to both the antibiotic intra-group and inter-group 
comparisons. 

 

Figure 42: Volcano plots showing taxa with largest differences in antibiotic (left) and 
untreated (right) intra-group comparisons (top). Top 10 taxa from the differential 
analyses associated with antibiotic and untreated comparisons (bottom). 

Taxa name logFC AveExpr adj.P.Val Taxa name logFC AveExpr adj.P.Val

Rothia.dentocariosa -4,624 6,556 0,004 Cytobacillus.firmus -1,986 1,517 0,213

Candidatus.Nanosynbacter.sp..HMT.352 -5,759 9,961 0,026 Sarcina.sp..JB2 -1,876 2,369 0,213

Streptococcus.periodonticum -4,213 4,882 0,026 Halanaerobium.praevalens -1,922 0,988 0,213

Corynebacterium.durum -4,736 4,782 0,075 Eubacterium.ventriosum -1,885 3,014 0,213

Treponema.sp..OMZ.791 3,632 -1,091 0,075 Bacteroides.humanifaecis -2,290 0,544 0,213

Candidatus.Minimicrobia.vallesae -4,502 6,321 0,075 Fructilactobacillus.sanfranciscensis -1,949 1,295 0,213

Agrococcus.sp..REN33 3,658 0,320 0,150 Clostridium.sp..BJN0001 -1,792 2,379 0,213

Streptococcus.canis -2,711 5,174 0,150 Clostridium.taeniosporum -1,672 2,279 0,216

Streptococcus.sp..oral.taxon.064 -2,780 7,861 0,177 Enterococcus.rotai -1,772 1,616 0,278

Malassezia.restricta 3,958 1,172 0,177 Ignavigranum.ruoffiae -1,656 1,031 0,278
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3.4.4 Differential analyses in resistance genes 

In this section, we repeat the previous differential and longitudinal analyses at the 
resistance gene level. All figures and full tables are available in supplementary materials 
(Supplementary Table 12 and Figure 12). 

 

3.4.4.1 Background noise determination 

The background noise threshold was adjusted to ensure a monotonically decreasing 
mean-variance trend. As previously observed at the taxa level, Figure 44 shows that the 
mean-variance trend resembles a noisy logarithmic curve, with many genes at low 
abundance. Setting a background noise threshold of log2(cpm) > 2 resulted in the removal 
of 500 out of 638 genes. This stringent filtering reflects the matrix's high sparsity, with 
approximately 90% of entries being zeros, as illustrated in the histogram below. 

 

Taxa name logFC AveExpr adj.P.Val

Rothia.dentocariosa -4,654 6,556 0,061

Corynebacterium.durum -5,227 4,782 0,316

Streptococcus.periodonticum -4,119 4,882 0,316

Streptococcus.sp..NPS.308 -2,749 9,296 0,515

Actinomyces.sp..oral.taxon.171 -4,371 4,942 0,515

Agrococcus.sp..REN33 3,833 0,320 0,515

Comamonas.aquatica 3,386 3,651 0,515

Streptococcus.sp..oral.taxon.064 -2,937 7,861 0,527

Treponema.sp..OMZ.791 3,398 -1,091 0,527

Streptococcus.toyakuensis -2,633 11,313 0,527

Figure 43: Volcano plot showing taxa with largest differences in inter-group comparison 
at D30 (top). Top 10 taxa from the differential analysis (bottom). 
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3.4.4.2 Intra- and inter-group comparisons 

Of the four comparisons, only the antibiotic intra-group (D30 - D0) and inter-group 
comparisons at D30 yielded significant results: pmrA showed a log2(fold-change) of -2.6 
(adjusted p-value = 6.1%) and -3.2 (adjusted p-value = 3%) in these comparisons, 
respectively (Figure 45). No genes reached significance at baseline or in the untreated 
intra-group comparison. Similar to the taxa results, the top genes in the D30 inter-group 
comparison largely overlap with those in the antibiotic intra-group (D30 - D0) 
comparison. However, unlike taxa, their magnitude and significance are greater in the 
inter-group comparison. In other words, these genes exhibit opposite trends over time 
between the antibiotic and untreated groups. As noted in the taxa section, the small 
number of patients receiving antibiotics limits the power to detect significant changes, 
thereby hindering the identification of resistant genes.  

 

Figure 44: Mean-variance scatterplot (left). All taxa with mean log2(cpm) <2 were excluded 
from differential analyses. Histogram of raw counts in the resistance gene matrix (right). 



 

Version 01    58 

Figure 45: Volcano plot showing taxa with largest differences in intra and inter-group 
comparisons (top). Top 10 taxa from the differential analysis (bottom). 

Gene name logFC AveExpr adj.P.Val Gene name logFC AveExpr adj.P.Val

tet(Q) -1,735 11,984 0,905 tet(Q) -1,448 11,984 0,965

CfxA3 1,263 13,913 0,905 vanY gene in vanG cluster 1,234 9,528 0,965

mdeA -1,622 8,060 0,905 ErmF -1,079 11,380 0,967

tet(O) 1,541 7,947 0,905 tet(32) -1,096 9,484 0,967

lmrP 1,496 6,396 0,905 tetB(60) -0,688 10,403 0,967

tet(M) 1,161 11,860 0,905 tetA(46) -0,860 11,728 0,967

Acinetobacter baumannii AbaQ -1,188 6,661 0,905 CfxA2 -1,053 10,152 0,967

vanY gene in vanF cluster 1,164 7,182 0,905 mtrD -0,755 13,137 0,967

TEM-1 -1,229 7,335 0,905 lsaC -0,672 11,580 0,967

APH(3')-IIIa 1,223 7,270 0,905 AAC(3)-IIb 1,121 8,483 0,967

Gene name logFC AveExpr adj.P.Val Gene name logFC AveExpr adj.P.Val

pmrA -2,582 13,073 0,061 pmrA -3,167 13,073 0,030

aad(6) 3,135 6,551 0,230 vanY gene in vanB cluster -2,565 15,546 0,104

vanY gene in vanB cluster -1,947 15,546 0,230 Acinetobacter baumannii AbaQ 3,647 6,661 0,104

Acinetobacter baumannii AbaQ 2,775 6,661 0,230 patA -1,768 14,742 0,264

AAC(6')-Ie-APH(2'')-Ia bifunctional protein2,812 7,320 0,230 spd 2,949 6,985 0,352

patA -1,441 14,742 0,230 patB -1,566 15,282 0,367

mdeA 2,703 8,060 0,230 vanY gene in vanM cluster -1,780 16,817 0,367

RlmA(II) -1,610 13,105 0,230 RlmA(II) -1,718 13,105 0,367

spd 2,434 6,985 0,258 tet(37) 2,938 8,013 0,367

patB -1,292 15,282 0,258 OXA-22 2,391 8,517 0,367

Antibiotic_Day30-Antibiotic_Day0 (Antibiotic_Day30-Antibiotic_Day0)-(Untreated_Day30-Untreated_Day0)

Untreated_Day30-Untreated_Day0Antibiotic_Day0-Untreated_Day0



 

 

4 Conclusion 
Due to the COVID-19 pandemic, clinical studies (WP4) suffered a delayed, which in turn 
negatively impacted patient enrolments. This resulted in smaller cohorts and reduced 
statistical power, especially at the antibiotic class level, where few patients received the 
same class of antibiotics. 

In the ADEQUATE study, out of 49 patients recruited, 15 received antibiotics but 3 samples 
were missing, reducing the treated group to 12 patients. Among these, 7 were treated with 
broad spectrum penicillins, 2 with macrolide, 1 with both, 1 with narrow spectrum 
penicillin and 1 with an antibiotic of the lincosamide class. Similarly, in the PRUDENCE 
study, only 3 antibiotic classes (broad and narrow spectrum penicillins, and macrolides) 
had sufficient sample sizes for biostatistical analysis.  

In addition to the limited sample size, start and end dates of antibiotic therapy were not 
systematically available, especially for delayed antibiotherapy, resulting in hypothetical 
treatment between day 1 and day 7. 

Across the three analyses, three main trends emerged: (1) microbiota variation was 
primarily influenced by sampling site, necessitating adjustment for this and other 
confounders; (2) untreated patients’ microbial communities showed no change over time; 
and (3) antibiotics had a modest overall impact on both nasopharyngeal and stool 
microbiota. 

More specifically, in the PRUDENCE nasopharyngeal analysis, the differential analysis 
identified only two taxa, Corynebacterium and Dolosigranulum, both associated with 
healthy microbiota. In stool samples, two species (P. massiliensis and A. propionicum) 
were found significant at baseline in the antibiotic and macrolide inter-group 
comparisons. In macrolide intra-group comparisons, 67 taxa showed significant U-shape 
trajectories, reaching minimum abundance at day 7. These results should be interpreted 
cautiously, as they rely on two samples at this time point. Additionally, three and two 
resistant genes were identified in narrow-spectrum penicillin and macrolide respectively, 
the latter (vanY and APH(6)-Id) showing an upward trend indicative of potential resistance 
development. Overall, these findings suggest that antibiotics had a limited impact on the 
intestinal microbiota, but that narrow-spectrum penicillin and macrolides may pose a 
higher risk for developing AMR in CA-ARTI patients. 

In the ADEQUATE oropharyngeal analysis, fewer significant results were observed. Three 
species (Rothia dentocariosa, Candidatus Nanosynbacter, and Streptococcus 
periodonticum) and one resistance gene (pmrA) were found with significantly decreased 
abundance by day 30. Unexpectedly, S. pneumoniae, P. aeruginosa and K. pneumoniae, 
the most common Gram-positive or Gram-negative pathogens expected in CA-ARTI 
patients, did not vary significantly across time points or between treatment groups. 
Unfortunately, the small sample size and low sequencing depth limited conclusive 
interpretations in the ADEQUATE study. 

Finally, enrichment analysis was initially considered to uncover common antibiotic 
classes associated with resistant genes, but this analysis was deferred due to the limited 
number of significant findings. 



 

 

5 References 
 

Andrews, S. Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput 
Sequence Data [Internet]. 2010 [cited 2022 Feb 18]. Available from: 
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

Bogaert, D., Keijser, B., Huse, S., Rossen, J., Veenhoven, R., Van Gils, E., ... & Sanders, E. 
(2011). Variability and diversity of nasopharyngeal microbiota in children: a metagenomic 
analysis. PloS one, 6(2), e17035. 

Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. 
Bioinformatics. 2018;34:i884–90.  

de Steenhuijsen Piters, W. A., Heinonen, S., Hasrat, R., Bunsow, E., Smith, B., Suarez-
Arrabal, M. C., ... & Mejias, A. (2016). Nasopharyngeal microbiota, host transcriptome, and 
disease severity in children with respiratory syncytial virus infection. American journal of 
respiratory and critical care medicine, 194(9), 1104-1115. 

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 
2012;9:357–9.  

Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in 
metagenomics data. PeerJ Comput Sci. 2017;3:e104.  

McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, Baylay AJ, et al. The Comprehensive 
Antibiotic Resistance Database. Antimicrob Agents Chemother. 2013;57:3348–57.  

Robinson, M. D., & Oshlack, A. (2010). A scaling normalization method for differential 
expression analysis of RNA-seq data. Genome biology, 11, 1-9. 

Segata, N., Haake, S. K., Mannon, P., Lemon, K. P., Waldron, L., Gevers, D., ... & Izard, J. (2012). 
Composition of the adult digestive tract bacterial microbiome based on seven mouth 
surfaces, tonsils, throat and stool samples. Genome biology, 13, 1-18. 

Tremaroli, V., & Bäckhed, F. (2012). Functional interactions between the gut microbiota 
and host metabolism. Nature, 489(7415), 242-249. 

Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome 
Biology. 2019;20:257.  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Co
py

ri
gh

t 
20

19
 V

AL
U

E-
D

x 


