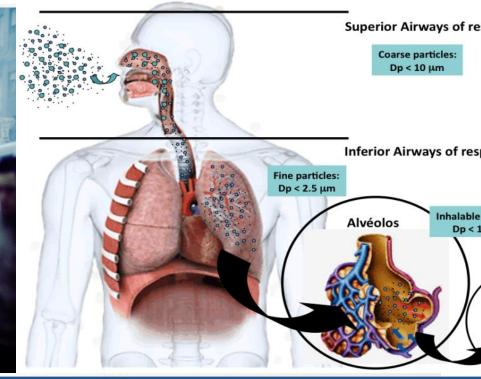
AIR POLLUTION AND HEALTH: TAKING STOCK OF THE PROPOSED **REVISION TO THE** AMBIENT AIR QUALITY DIRECTIVE

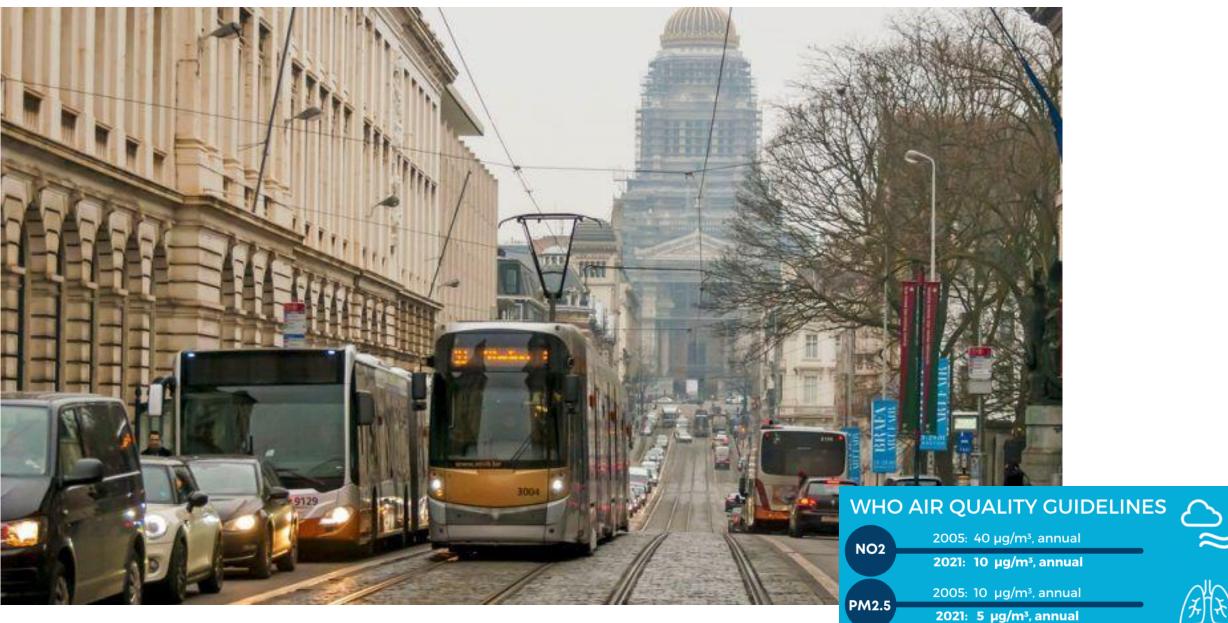
CLEAN AIR IN EUROPE FOR ALL


Reviewing the latest science on air pollution and health – Part 1

Chairs: Hanna Boogaard (HEI and ISEE) and Klea Katsouyanni (Imperial College London)

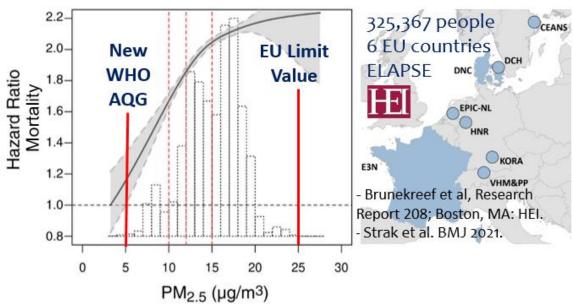
we inhale 10,000 liters of air/day

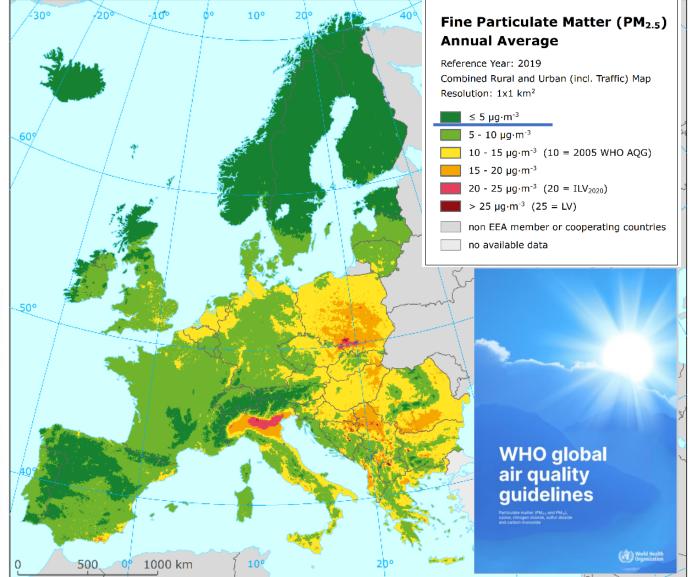
CLEAN AIR IN EUROPE


Life after WHO 2021 AQG – What does science tell us?

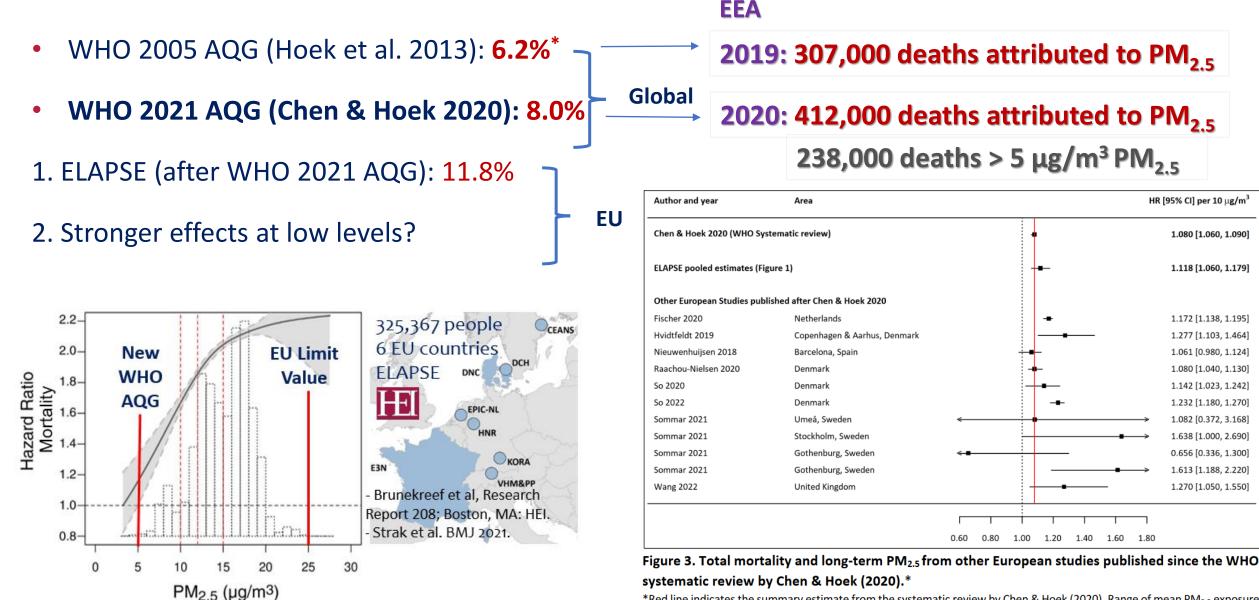
Zorana Jovanovic Andersen, Chair of the European Respiratory Society (ERS) Environment and Health Committee; Professor in Environmental Epidemiology, Department of Public Health, University of Copenhagen, Denmark

WHO 2021 AQG – main messages and beyond



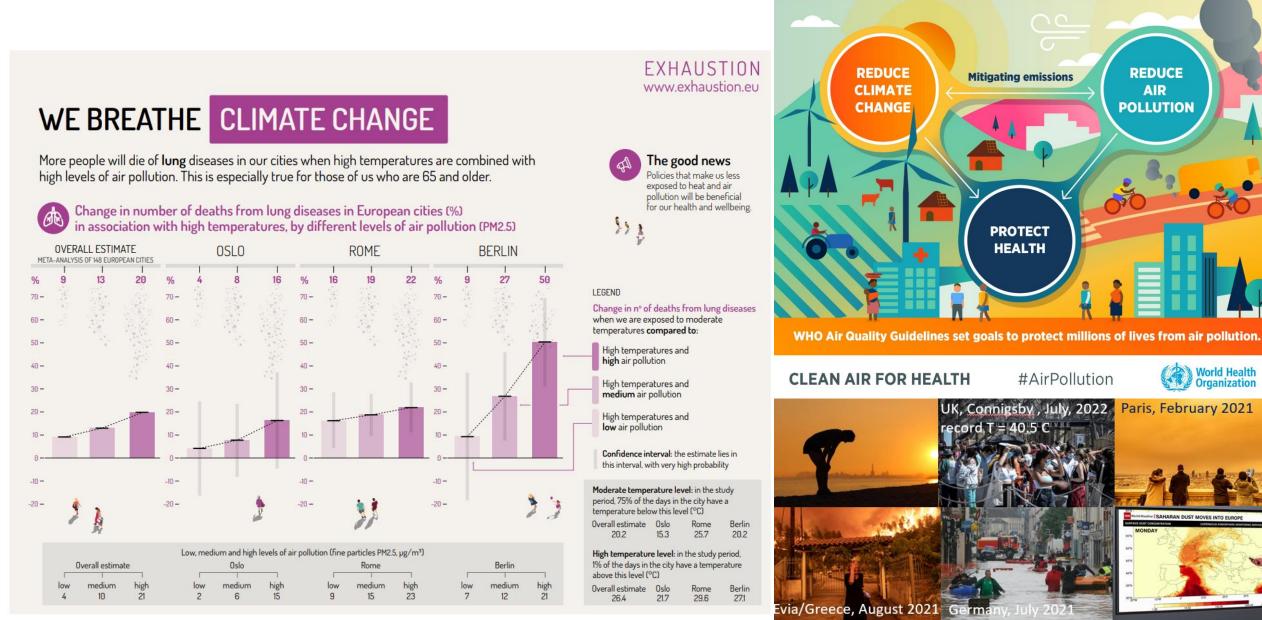


1. Everyone is exposed – no lower threshold


- Everyone in Europe is exposed to harmful levels of air pollution (97.5% European population)
- 2. No lower threshold below which air pollution is safe

Source: file:///C:/Users/vlq961/Downloads/ETC%20HE%20report%202022-3_status_eionet_mix_2021_2022-03-31_FINAL-2.pdf

2. Air pollution burden is huge, increasing & underestimated in ERS


^{*}interpretation: 6.2 % increase in mortality risk for each 10 μ g/m³ increase in PM_{2,5}

*Red line indicates the summary estimate from the systematic review by Chen & Hoek (2020). Range of mean PM_{2.5} exposure =uropedan-studies from 5.9846/20.501ggmt4.uploads/2022/04/Statement-HIA-by-ERS_ISEE_final-002.pdf

https://journals.lww.com/environepidem/Fulltext/2022/10000/Benefits_of_future_clean_air_policies_in_Europe_.5.aspx

3. Air pollution and climate change – inseparable issues

REDUCING AIR POLLUTION AND MITIGATING CLIMATE CHANGE, TOGETHER HELP TO PROTECT OUR HEALTH

Health burden of air pollution

Premature deaths + millions of new cases of disease, symptoms, worsened quality of life, doctor visits, ER visits, hospital admissions, sick days (school & work), medication use....

Adults

- All-cause mortality
- Respiratory disease mortality
- Respiratory disease morbidity
- Asthma
- COPD
- Pneumonia
- Cardiovascular disease mortality
- Cardiovascular disease morbidity
- Myocardial infarction
- Stroke
- Atrial fibrilation
- Heart failure

- Cancer morbidity and mortality
- Lung cancer
- Breast cancer
- Kidney cancer
- Bladder cancer
 Liver cancer
- Stomach cancer
- Brain tumors
- Leukemia
- Lymphomas COVID-19
- Type 2 diabetes mortality
- Type 2 diabetes morbidity
- Neurodegenrative disease morbidity
 - Dementia and Alzheimer's Disease
 - Parkinson's disease
 - Multiple sclerosis
- Psychiatric diseases morbidity
- Depression
- Suicide

Pregnancy and birth outcomes

- Hypertensive disorders in pregnancy
- Preeclampsia
- Gestational hypertension
- Gestational diabetes

Children outcomes

- Respiratory disease mortality
- Respiratory disease morbidity
- Asthma and asthma related outcomes
- Lower respiratory infections
- Metabolic disease
- Type 1 diabetes

Offspring

- Intrauterine growth restriction
- Decreased birthweight
- Reduced fetal growth
- Preterm birth
- Congential anomalies
- Spontaneous abortion
- Stillbirth
- Infant death

- Childhood Cancers
- Leukemia
- Lymphomas
- Central nervous system cancers
- Tumors originating in embryonic tissue
- Neuroblastoma
- Retinoblastoma
- Nephroblastoma
- Neurodevelopment
- Autism
- ADHD


Air Pollution and Lung (Erik)

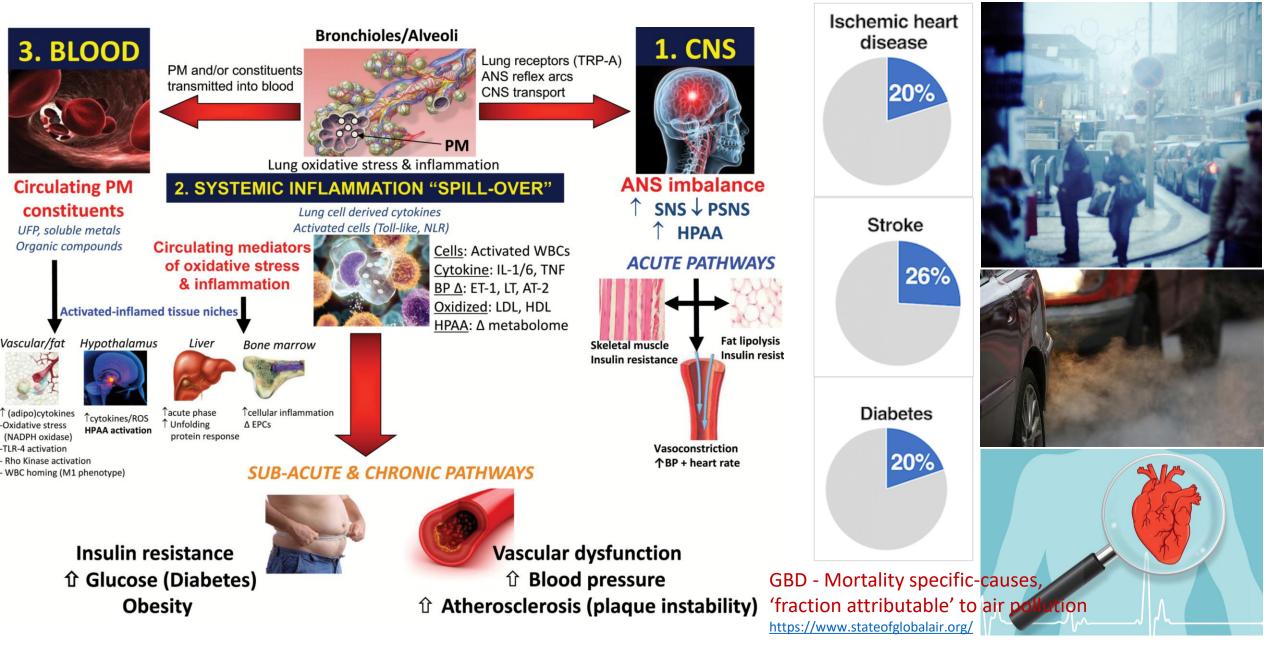
Long-term (years, lifetime) exposure to air **pollution** can lead to impaired lung function and development of new lung disease in healthy individuals and increased risk of dying from those diseases:

asthma, COPD, pneumonia, COVID-19, lung cancer

Short-term (hours, days) exposure to air **pollution** can exacerbate existing lung disease in lung patients and trigger:

wheezing, cough, shortness of breath, need for medication, ER visits, hospitalizations, and death

RS


A nine-year-old girl who died following an asthma attack has become the first person in the UK to have air pollution listed as a cause of death

Ella Adoo-Kissi-Debrah, who lived near the South Circular Road in Lewisham. south-east London, died in 2013.

Ella Kissi-Debrah - 9 year old girl suffered fatal asthma attack triggered by air pollution, London, February 2013

Air pollution and cardio-metabolic health (Petter)

Air pollution and cancer (Michelle)

Commission

Strengthening Europe in the fight against cancer

EU Health Union: Europe's Beating Cancer Plan #EUCancerPlan

3 FEBRUARY 2021

- Cancer causes 1 in 4 deaths in the EU (1.3 million cancer deaths in 2020)
- Air pollution is carcinogenic,^{*} causes lung cancer and possibly other (breast, liver, blood, stomach, colon) cancers
- BECA the EU Green Deal is a key tool to limit people's exposure to (air) pollution and prevent cancer,

GBD - 'fraction attributable' to air pollution https://www.stateofglobalair.org/

^{*}International Agency for Research on Cancer (IARC) 'Air Pollution and Cancer' 2013

Lung

cancer

19%

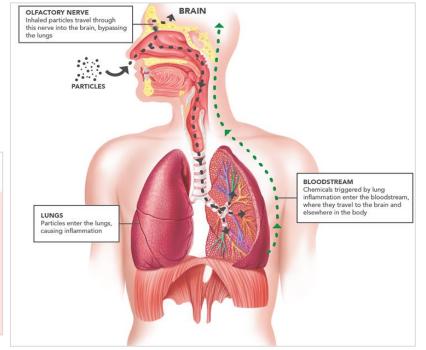
"In 2020, while we were all fighting against the COVID-19 pandemic, many of us were fighting a silent battle. The battle against cancer. In 2020, we lost 1.3 million Europeans to this disease. And sadly, the number of cases is on the rise. This is why we present Europe's Beating Cancer Plan today. The fight of

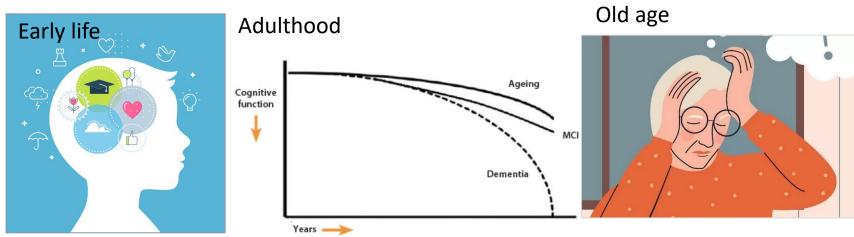
Cutting pollution through the EU's Zero Pollution Action Plan and the Chemical Strategy for Sustainability as well as strong implementation of other existing EU policies would go a long way to reduce cancer cases and deaths. This would be an effective investment in our citizen's well-being.

Hans Bruyninckx, EEA Executive Director

NEWS

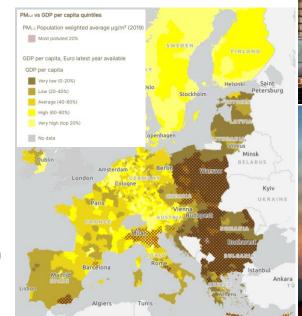
European Environment Agency


Exposure to pollution causes 10% of all cancer cases in Europe


Exposure to air pollution, second-hand smoke, radon, ultraviolet radiation, asbestos, certain chemicals and other pollutants causes over 10% of all cancer cases in Europe, according to a European Environment Agency (EEA) report published today. The good news is that these risks are preventable.

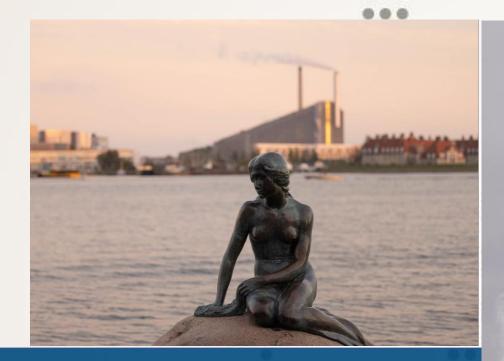
Emerging issues: air pollution and the brain (Barbara) (Delta ERS)

- Impaired neurocognitive development in children (learning difficulties, loss of IQ, ADHD, autism)
- Accelerated cognitive decline (dementia) elderly
- Mental health (suicide, depression, anxiety)



Everyone is exposed – some are more vulnerable

- Children
- Pregnant women
- Elderly
- Chronic diseases patients
- Poor (environmental inequality)


Conclusion

New AAQD, fully aligned with WHO 2021 AQG, is a major public and planetary health opportunity, that would:

- 1. prevent a substantial number of new cases of major NCDs
- 2. make EU citizens more resilient to seasonal influenza epidemics and COVID-19-like new pandemics
- 3. improve life of lung, heart, and other chronic disease patients
- 4. Indirect benefit for health help mitigate unprecedented climate change impact on our health and our planet

Clean air as a basic civil right - no one should get sick or die from breathing

Thank You

zorana.andersen@sund.ku.dk

@zoranajova

Rosamund Adoo Kissi Debrah:'We need to ensure parents know the impact air pollution has on their children'

ELF Award 2022 - Rosamund Adoo-Kissi-Debrah

European Parliament

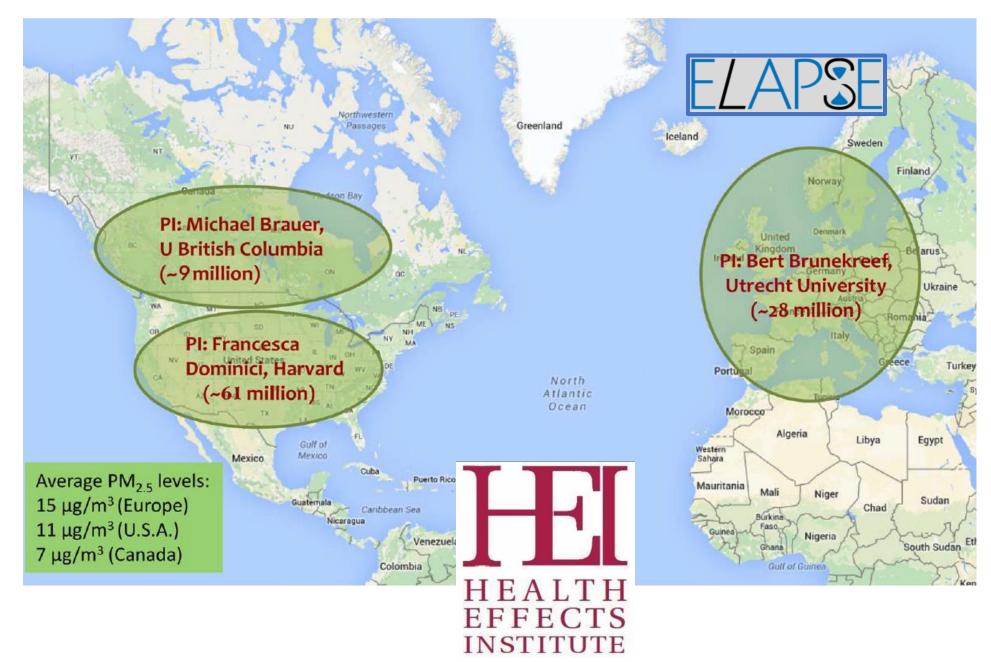
https://www.youtube.com/watch?v=V673obDHCVc

Effects of low-level air pollution: A study in Europe, and a harmonized analysis with large studies in Canada and the United States

Bert Brunekreef, PhD

Emeritus Professor of Environmental Epidemiology

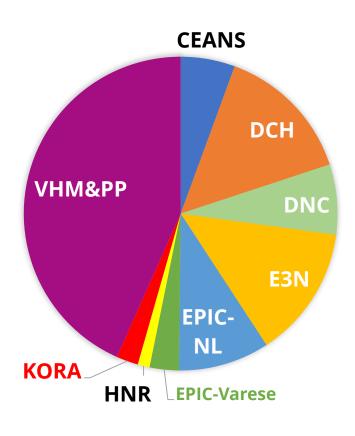
Utrecht University, The Netherlands

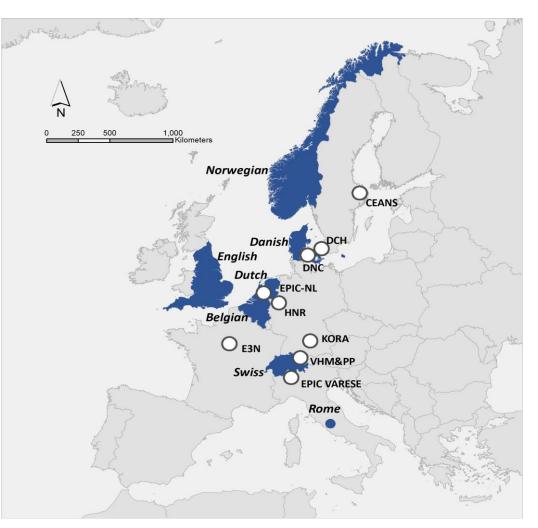

The WHO AQGs and low-level studies

- The AQGs are defined as the lowest level at which adverse effects on health have been <u>demonstrated beyond reasonable doubt</u>
- Technically: the AQGs have been set at the mean of the 5th percentiles of the exposure distributions in a reasonable number of high-quality studies showing these adverse effects
- The 2021 AQG report does **not identify thresholds**
- Non-zero thresholds <u>may not exist</u> we simply don't know, and we probably never will

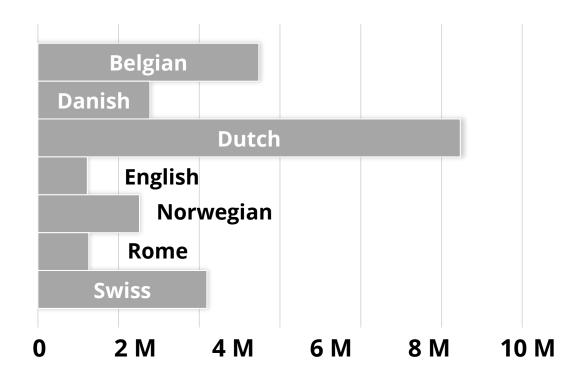
2021 WHO Air Quality Guidelines

Pollutant	AQG 2005	AQG 2021
PM _{2.5} year	<mark>10 μg/m³</mark>	<mark>5 μg/m³</mark>
PM _{2.5} 24 hrs	25 µg/m³	15 μg/m³
PM ₁₀ year	20 µg/m³	15 μg/m³
PM ₁₀ 24 hrs	50 µg/m³	45 μg/m³
O ₃ warm		<mark>60 µg/m³</mark>
O ₃ 8 hrs	100 µg/m³	100 µg/m³
NO ₂ year	<mark>40 µg/m³</mark>	<mark>10 μg/m³</mark>
NO ₂ 24 hrs		25 µg/m³
SO ₂ 24 hrs	20 µg/m³	40 µg/m³
CO 24 hrs		4 mg/m ³

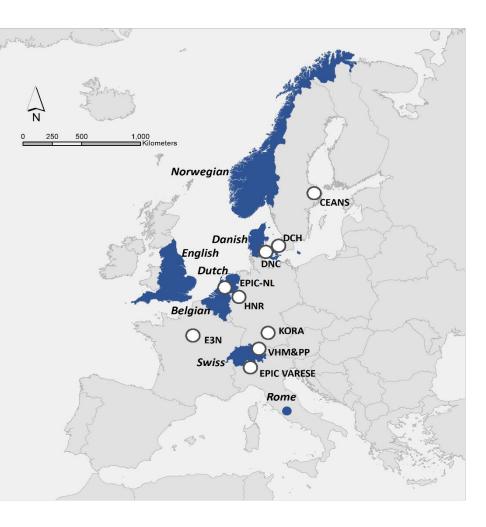

New studies into effects of low air pollution concentrations



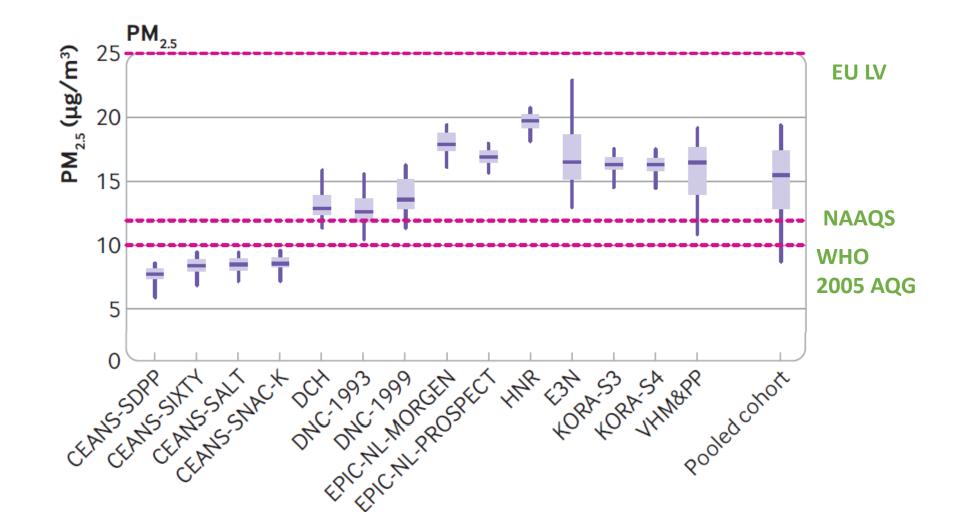
Pooled cohort



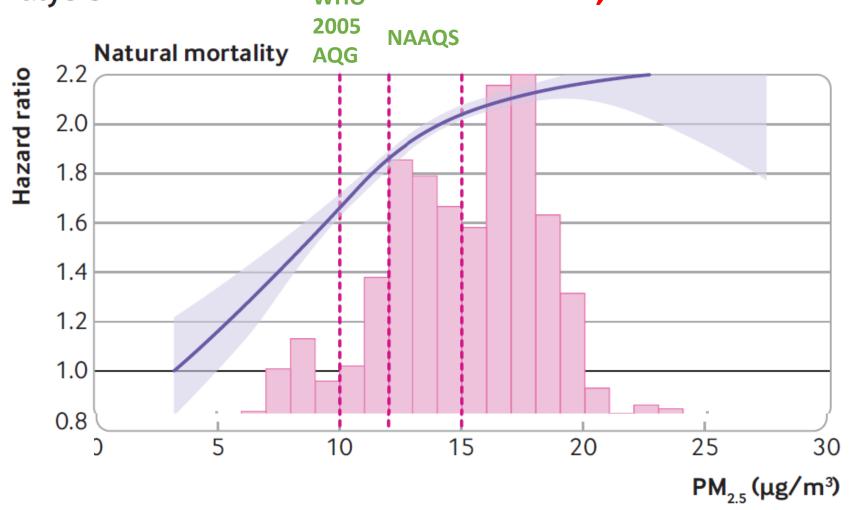
- N = 392,826
- Extensive covariate information



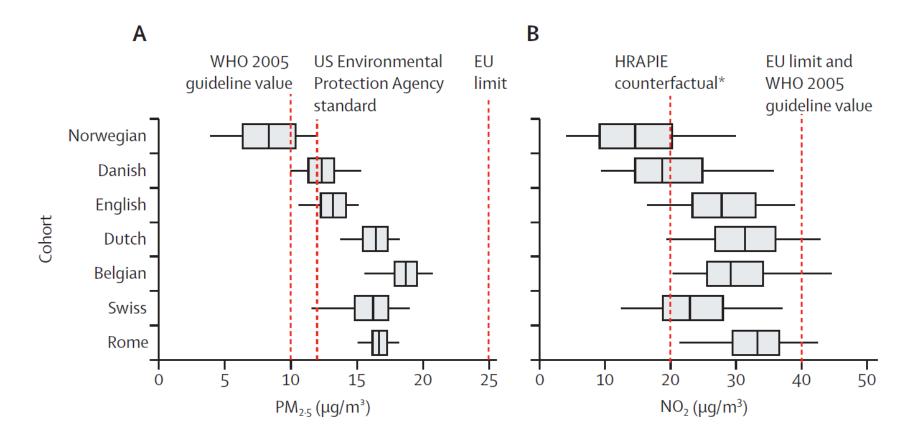
Administrative cohorts



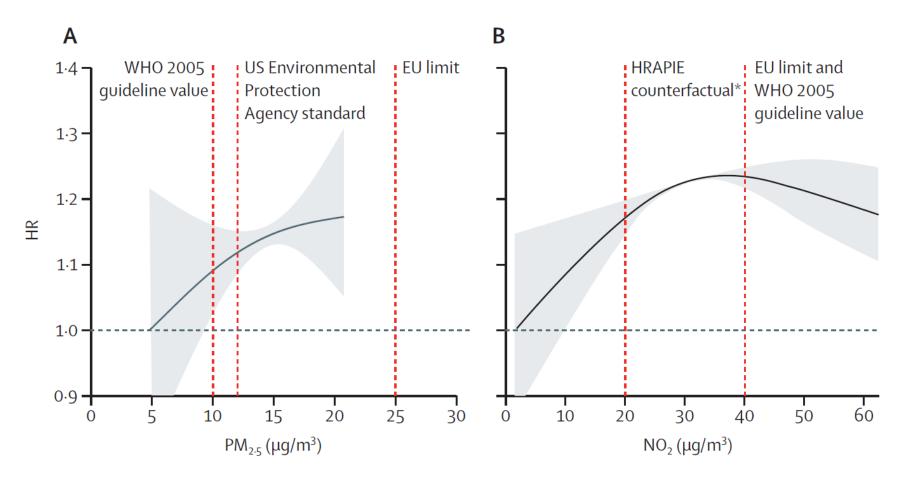
• N = 27,910,693


- Limited covariate info (except English)
- Analyzed individually -> Meta-analysis

Long term exposure to low level air pollution and mortality in eight European cohorts within the ELAPSE project: pooled analysis **Strak, BMJ 2021**



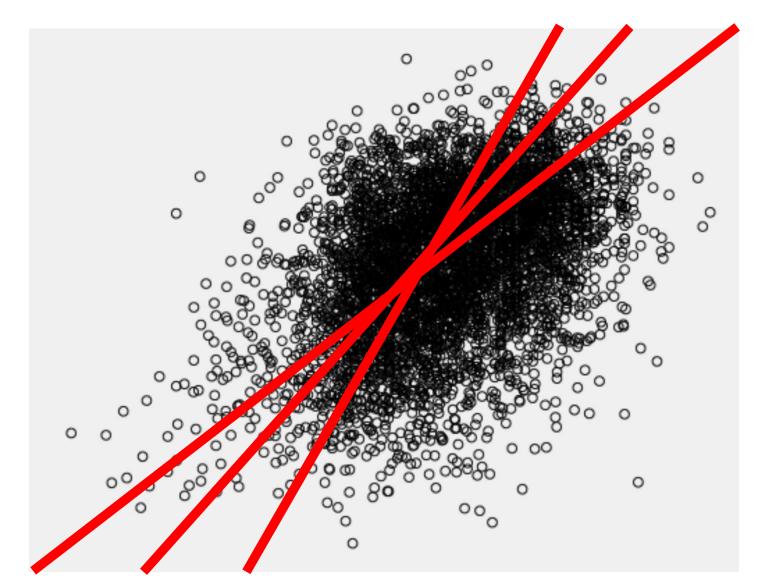
Long term exposure to low level air pollution and mortality in eight European cohorts within the ELAPSE project: pooled analysis WHO Strak, BMJ 2021


Long-term exposure to low ambient air pollution concentrations and mortality among 28 million people: results from seven large European cohorts within the ELAPSE project

Stafoggia, Lancet Plan Health 2022

Long-term exposure to low ambient air pollution concentrations and mortality among 28 million people: results from seven large European cohorts within the ELAPSE project

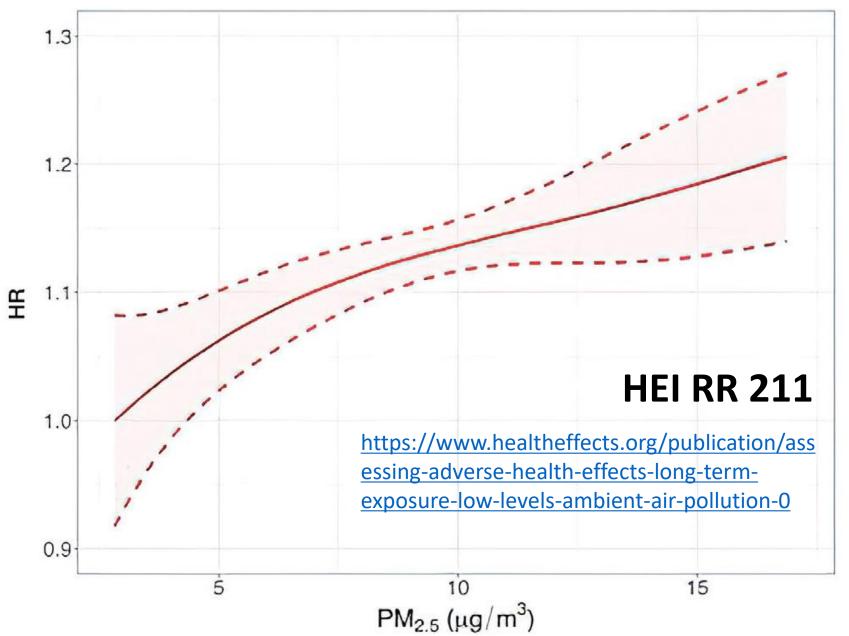
Stafoggia, Lancet Plan Health 2022

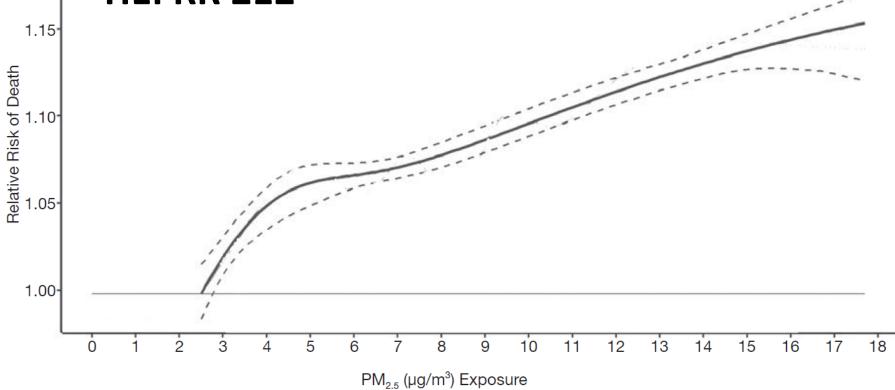


Pollutant S			HR (95% CI)	
		• I		
$PM_{2.5}$				
Full dataset	325,3	67 1.130 (1.106, 1.155)	
$<25 \ \mu g/m^3$	325,3	39 1.131 (*	1.107, 1.156)	
$< 20 \ \mu g/m^3$	316,56	40 1.138 (1	1.113, 1.164)	
$<15~\mu g/m^3$	151,2	50 1.257 (*	1.193, 1.324)	
<12 µg/m ³	52,52	8 1.296 (2	1.140, 1.474)	
<10 µg/m ³	25,42	2 1.146 (0.931, 1.410)	
NO ₂				
Full dataset	325,3	67 1.086 (1	1.070, 1.102)	
$<\!\!40~\mu\mathrm{g}/\mathrm{m}^3$	310,64	43 1.101 (1.083, 1.119)	HE
<30 µg/m ³	247,0	39 1.114 (2	1.088, 1.140)	
<20 µg/m ³	88,51	0 1.099 (1.033, 1.170)	
		rg/publication/m el-pm25-bc-no2-a	ortality-and-morbidity- and-o3-analysis	<u>effects-</u>

RR 208

Table 7. Hazard Ratios for Associations Between AirPollution and Natural-Cause Mortality in Subset Analysisa

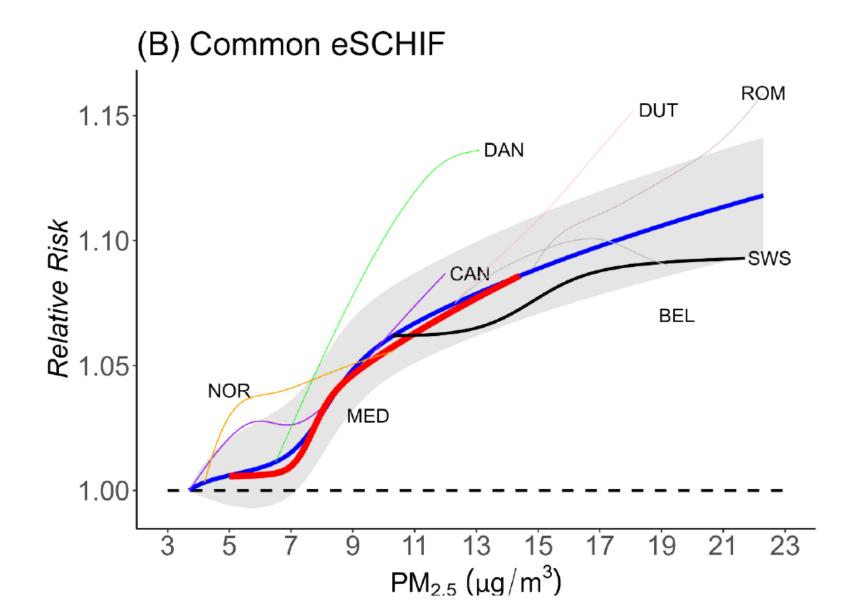

The data cloud...


Table P7 Comparison of performance of models withand without a threshold: natural-cause mortality

Pollutant	Threshold	AIC	BIC
	None	None 831671.6 83	831803.0
PM2.5	5 μg/m³	831671.6	831803.0
	7.5 μg/m³	831672.7	831804.1
	10 μg/m³	831677.4	831808.8
NO2	None	831678.6	831810.0
	10 μg/m³	831680.1	831811.6
	15 μg/m³	831685.4	831816.9
	20 µg/m³	831709.6	HEI RR 208

Medicare, USA, all-cause mortality

CanCHEC, non-accidental mortality **HEI RR 212** 1.15


Statement Figure. Shape of the association between outdoor PM_{2.5} exposure and nonaccidental death. This plot shows how the risk of death changes over different PM_{2.5} exposure concentrations. The relative risk of death compares the lowest observed PM_{25} concentration (2.5 µg/m³) to all higher concentrations. (Adapted from Investigators' Report Figure 29.)

https://www.healtheffects.org/announcements/new-canadian-studyreports-health-effects-very-low-air-pollution-levels.

Harmonized analysis of Canadian, US and European studies

- We harmonized the study populations to individuals age 65+, applied the same satellite-derived PM2.5 exposure estimates, selected the same sets of potential confounders and the same outcome.
- Hazard ratios for all-cause mortality associated with a 5 $\mu g/m^3$ increase in PM2.5 were:
- 1.039 (1.032, 1.046) in CanCHEC Canada,
- 1.025 (1.021, 1.029) in Medicare- USA, and
- 1.041 (1.014, 1.069) in ELAPSE Europe.

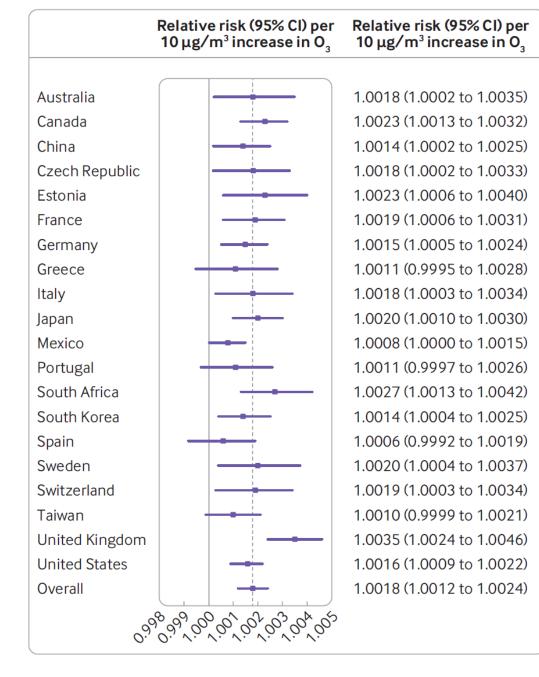
Chen, EHP 2023 (under review)

OPEN

2022

Benefits of future clean air policies in Europe

Proposed analyses of the mortality impacts of PM_{2.5} and NO₂


Barbara Hoffmann^a, Bert Brunekreef^b, Zorana J. Andersen^c, Francesco Forastiere^d, Hanna Boogaard^{e*}

	Total mortality and $PM_{2.5}$		
Cohort		Weights	HR [95% CI]
Belgian 2001 Census	⊢ ∎⊣	13.047%	1.100 [1.073, 1.128]
Danish cohort	F- B 1	12.437%	1.250 [1.199, 1.302]
DUELS	⊢ - ■ 1	12.237%	1.030 [0.984, 1.078]
NORCOHORT	HEH	13.207%	1.113 [1.092, 1.134]
Rome Longitudinal study	⊢ •−−1	11.413%	1.234 [1.161, 1.312]
Swiss National Cohort	⊦∎⊣	13.081%	1.030 [1.006, 1.055]
English CPRD	→■ →1	12.308%	1.046 [1.001, 1.094]
ELAPSE pooled cohort	⊢ ∎1	12.269%	1.177 [1.126, 1.231]
RE Model Q = 102.66, p = 0.00; l ² = 95.3%		100.000%	1.118 [1.060, 1.179]
	0.90 1.00 1.11 1.22 1.35 Hazard Ratio per 10 μg/m ³		D uses 1.08 (1.06-1 en and Hoek, 2020)

Total montality and DM

What about ozone?

- No association between long-term O3 and mortality in ELAPSE
- Associations with PM2.5, NO2 in ELAPSE robust against adjustment for O3
- Positive association in Medicare and CanCHEC even after adjustment for PM2.5 and NO2
- O3 *positively* correlated with PM2.5 and NO2 in Medicare and CanCHEC
- O3 *negatively* correlated with PM2.5 and NO2 in ELAPSE
- O3 modeled on different spatial scales, and concentration ranges small in ELAPSE cohorts

Short-term O3 is associated with mortality in all parts of the world Vicedo-Cabrera, BMJ 2020

Fig 2 | Overall and country specific short term ozone-mortality association, expressed as relative risk per 10 μ g/m³ increase in ozone (O₃, maximum eight hour average) (lag 01)

Concluding remarks

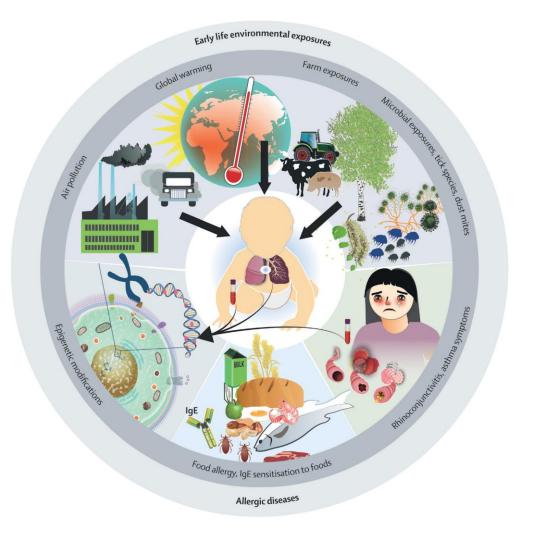
- WHO 2021 Air Quality Guidelines much lower than in 2005 for longterm PM2.5 and NO2
- Mostly because we know better what happens at low concentrations
 > role of science has been crucial in documenting effects at low levels in great detail
- AAQD needs to specify how and when Limit Values will be aligned with new WHO AQGs

THANK YOU FOR LISTENING!

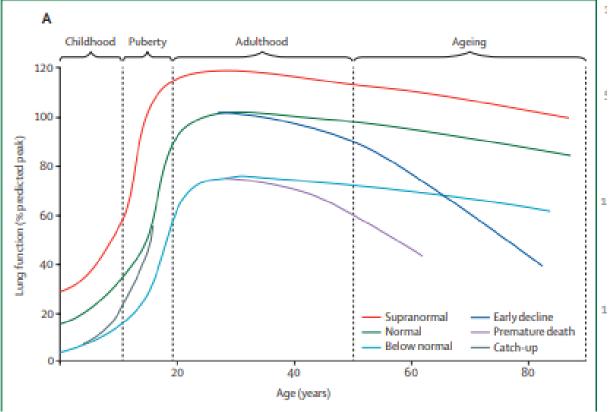
Reviewing the latest science on air pollution and health – Part 1

Beyond mortality: summarising important health effects of air pollution across the life course

Chairs: Hanna Boogaard (HEI and ISEE) and Klea Katsouyanni (Imperial College London)



Pregnancy and childhood


ERS-ISEE-HEI workshop, May 24th 2023

Erik Melén, MD, PhD Professor, senior consultant pediatric allergy ERS Environmental Health Committee

A life-course perspective

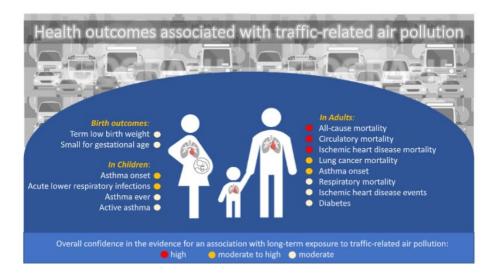
The example of lung function trajectories

Melén, Koppelman et al. Lancet Child & Adolescent Health 2022

Agusti, Melén et al. Lancet Resp Med 2022

Children are particularly vulnerable to environmental hazards:

- More time outside, physically active
- Higher rates of breathing and ventilation rates relative to body size
- Narrower airways
- Ineffective airway particle filtering
- Underdeveloped detoxification systems
- Typically don't choose lifestyle and environment


Exposure affects children in many ways:

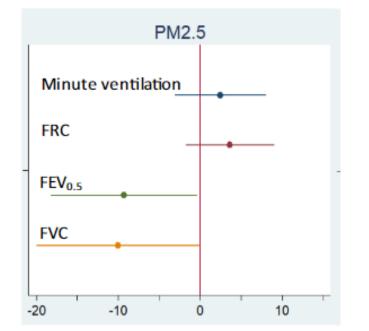
- In utero exposure; growth impairment, preterm birth
- Lower respiratory infections
- Asthma, lung growth limitation \rightarrow COPD risk
- Impede cognitive development
- Mortality (600,000 / y globally)

https://www.svt.se/nyheter/inrikes/avgaser-ger-barn-samre-lungor

Boogaard et al. Environ Int 2022

ACTA PÆDIATRICA

ORIGINAL ARTICLE | 🖨 Open Access


Air pollution exposure impairs lung function in infants

Björn Lundberg 🔀 Olena Gruzieva, Kristina Eneroth, Erik Melén, Åsa Persson, Jenny Hallberg, Göran Pershagen

First published: 17 May 2022 | https://doi.org/10.1111/apa.16412

Early life exposure and health in young adults

- **Chronic bronchitis** 5,5%
- Irreversible airflow limitation according to COPD-criteria 2%
- Cough, phlegm, recurrent airway infections and respiratory symptoms

• Air pollution exposure 0-1 y strongly associated (OR 2-3)

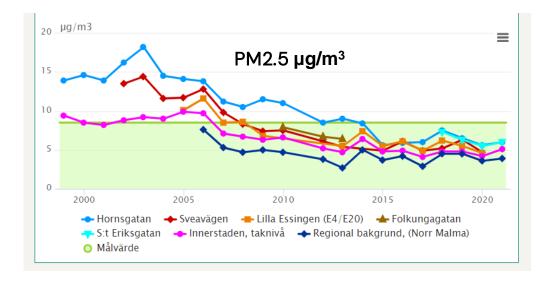
Wang et al, *Eur Resp J* 2021; *Thorax* 2021 Yu et al, *JAMA Open Network* 2022; *Lancet Regional Health Europe* 2023

The Washington Post

Growing evidence links air pollution exposure and covid-19 risks

By <u>Allyson Chiu</u> May 13, 2022 at 8:00 a.m. EDT

How can we mitigate air pollution health effects?



EUROPEAN RESPIRATORY JOURNAL ORIGINAL RESEARCH ARTICLE Z. YU ET AL.

Eur Resp J 2023

Associations of improved air quality with lung function growth from childhood to adulthood: the BAMSE study

Zhebin Yu¹, Simon Kebede Merid², Tom Bellander^{1,3}, Anna Bergström^{1,3}, Kristina Eneroth⁴, Antonios Georgelis^{1,3}, Jenny Hallberg^{2,5}, Inger Kull^{2,5}, Petter Ljungman^{1,6}, Susanna Klevebro^{2,5}, Massimo Stafoggia ⁽¹⁾, Gang Wang^{1,2}, Göran Pershagen^{1,3}, Olena Gruzieva ⁽¹⁾, and Erik Melén ⁽²⁾,

Association between improvement of air quality and differences in lung function growth from age 8 to 24 years

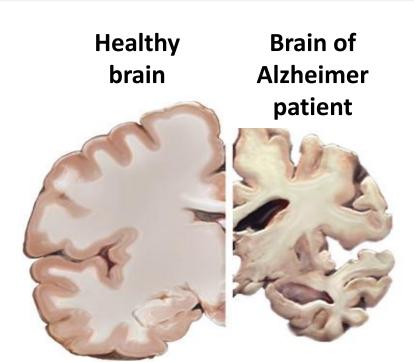
	Unit of	Raw	value
	improvement in exposure	Difference in FEV ₁ growth, mL per year (95% CI) [#]	Difference in FVC growth, mL per year (95% CI) [#]
PM _{2.5}	2.19 μg·m ^{−3}	4.63 (1.64–7.61)	9.38 (4.76–14.00)
PM ₁₀	1.00 μg·m ⁻³	0.72 (-0.91-2.35)	2.77 (0.19-5.35)
BC	0.28 μg·m ^{−3}	2.80 (0.66-4.93)	5.59 (2.30-8.87)
NO _x	6.17 μg·m ^{−3}	1.70 (-0.16-3.57)	3.29 (0.35-6.23)

Exposure improvement associated with 22% lower risk of having low lung function at age 24 years

The researchers said the results sent 'a strong message to policymakers and city planners'
 Photograph: Fabrizio Bensch/Reuters

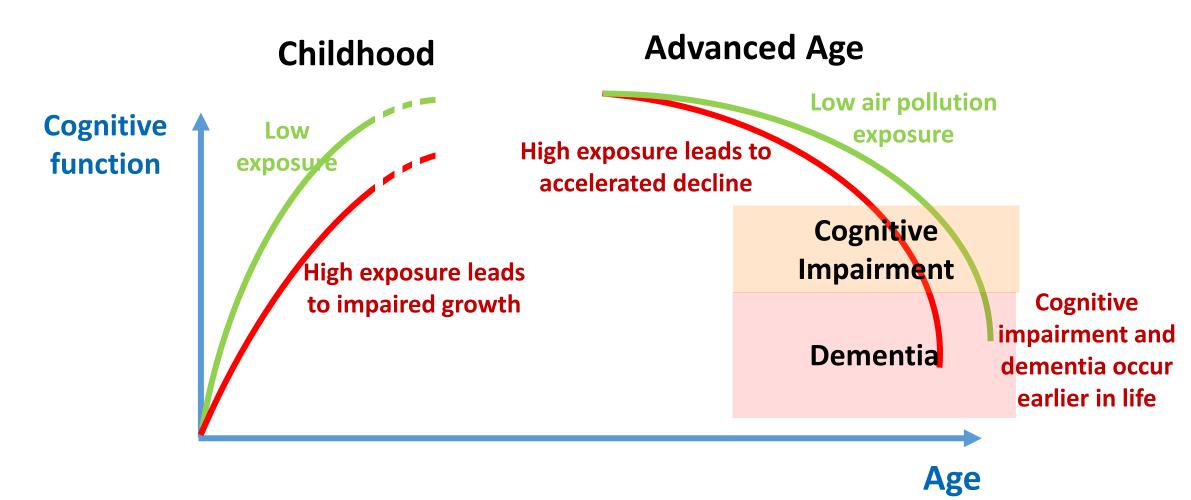
Conclusions

- Better air quality better health, bigger lungs!
- Prevention of chronic adult disease? Start early.


Cognitive development and neurologic disorders

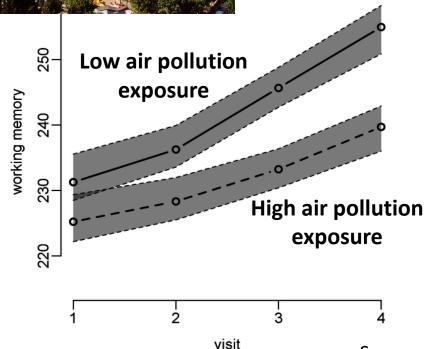
Barbara Hoffmann, Heinrich-Heine-University of Düsseldorf, ERS Advocacy Chair Elect

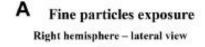
> Clean Air in Europe for All Brussels, May 24, 2023



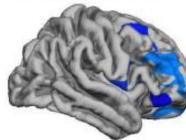
CLEAN AIR IN EUROPE FOR ALL

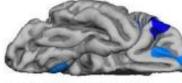
Air pollution and brain function




Cognitive development and brain structure in children Barcelona and Rotterdam

Lower cognitive growth among highly exposed





Right hemisphere - medial view

- Decrease in gray matter / cortical thickness
- Changes in white matter structure (wiring)

Right hemisphere – inferior view

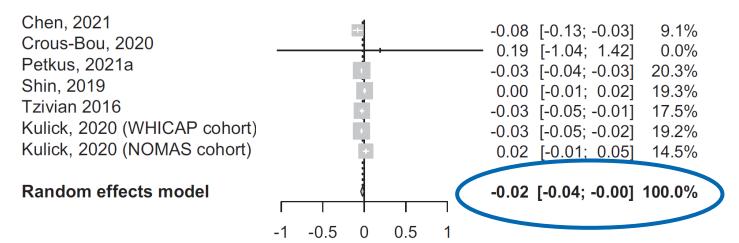
C.S.C.

Right hemisphere - superior view

Left hemisphere - lateral view

Left hemisphere - medial view

Guxens et al. BPS 2018

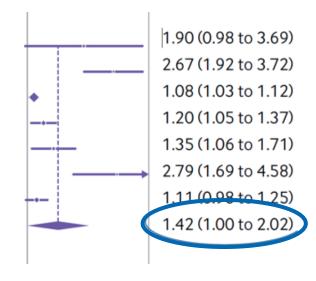

Sunyer et al. Plos Med 2015

Impact on the aging brain Meta-analyses

95%-CI Weight

Thompson et al, 2023

Study



Air pollution is related to incidence of dementia

Active	
Astrom 2021	1806
Grande 2020	2927
Mortamais 2021	7066
Semmens 2022	2564
Shaffer 2021	4166
Sullivan 2021	1572
Wang 2022	2239
Test for heterogeneity: τ ²	² =0.04, l ² =87.69%; H ² =8.12
Test for $\theta_i = \theta_i$: Q(6)=48.73	, P=0.00

Air pollution is related to accelerated cognitive decline

Wilker et al, BMJ, 2023

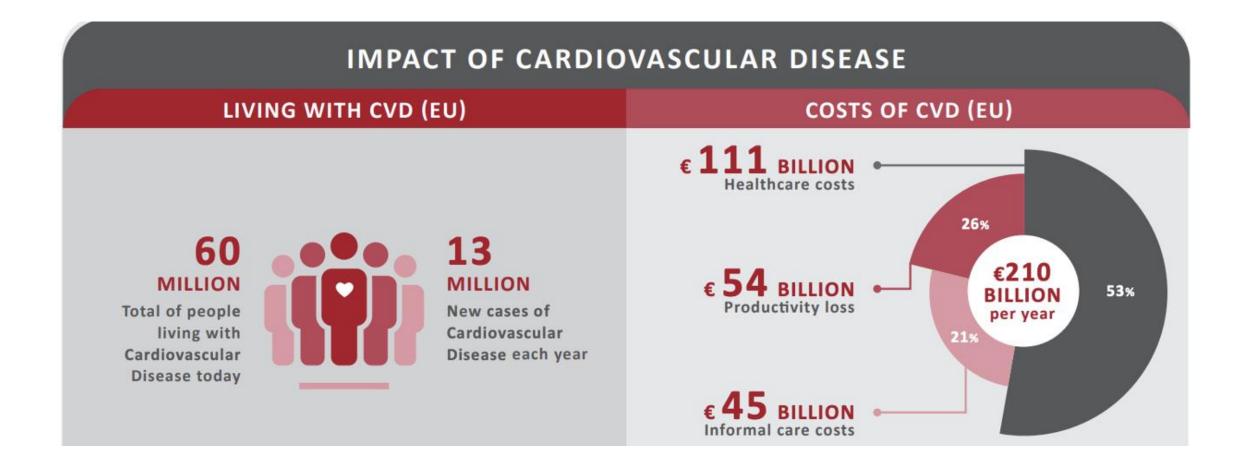
Conclusions

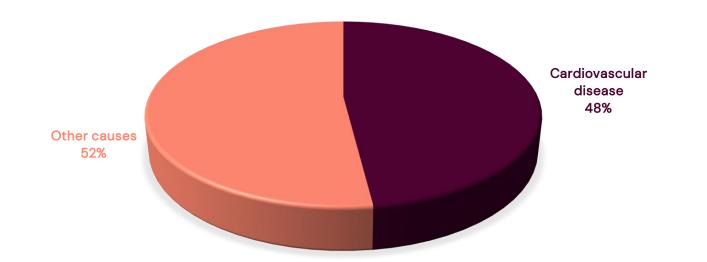
- Air pollution impairs cognitive growth in babies and children
- Air pollution accelerates cognitive decline and development of dementia in the aging brain

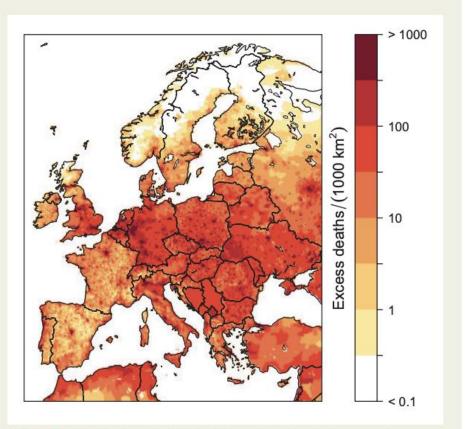
Heart disease from the air we breathe

Petter Ljungman, MD PhD

Associate professor, Karolinska Institutet Senior consultant of cardiology, Danderyd Hospital, Sweden Co-chair ISEE Europe, Scientific Secretary of the Swedish Society of Cardiology

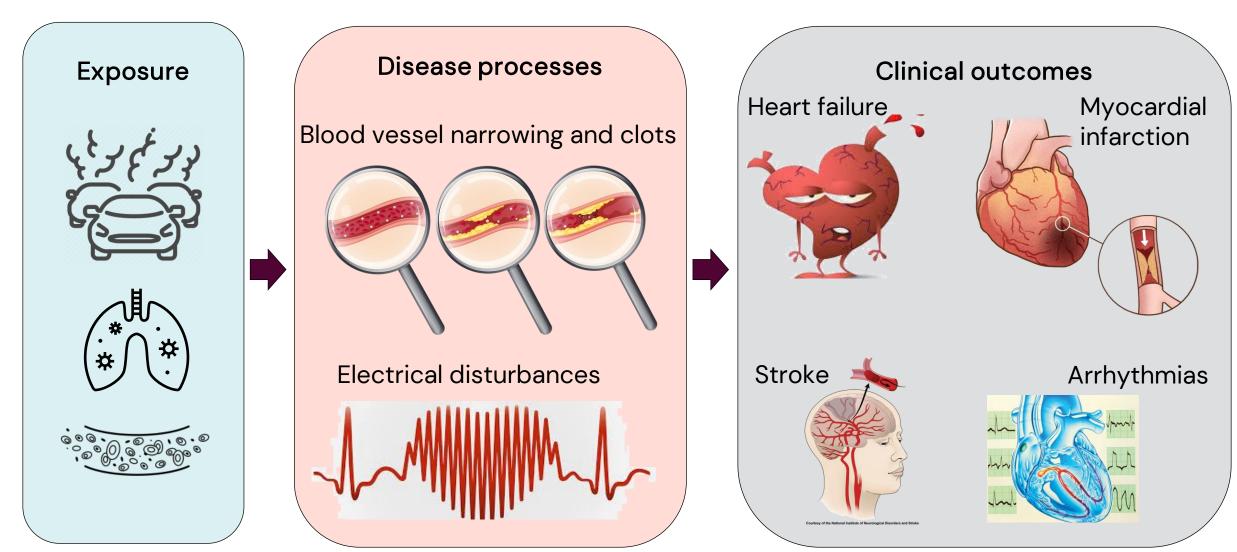


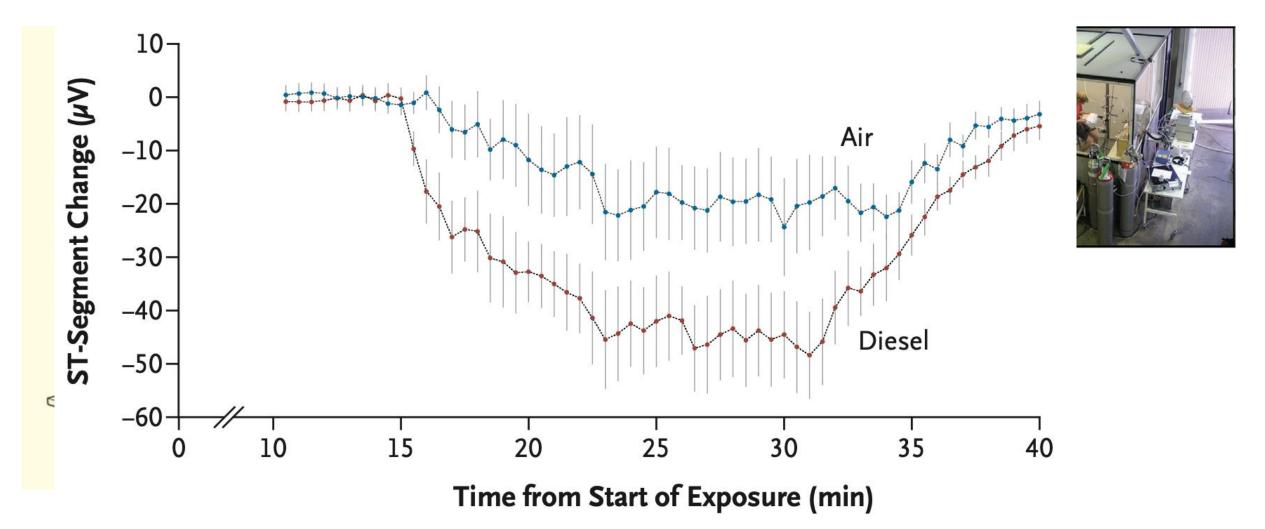

Cardiovascular disease


Very common and the leading cause of death in the EU

Cardiovascular deaths from air pollution across Europe

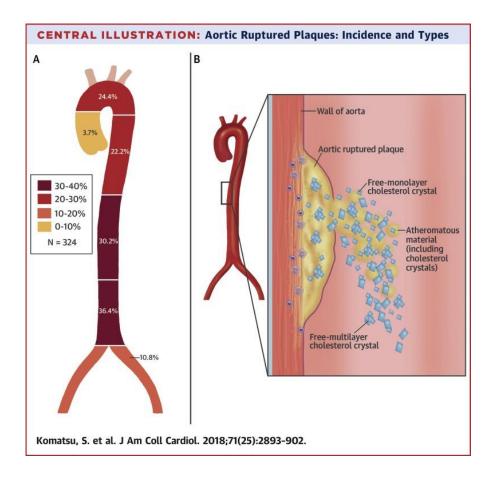
PROPORTION OF AIR POLLUTION DEATHS FROM CARDIOVASCULAR DISEASE

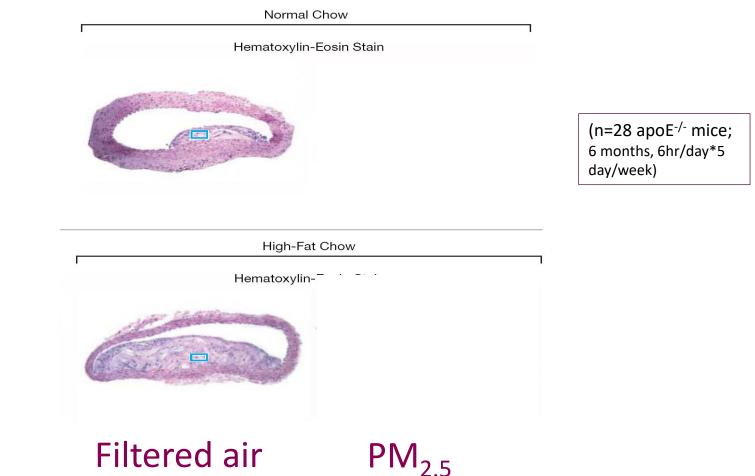


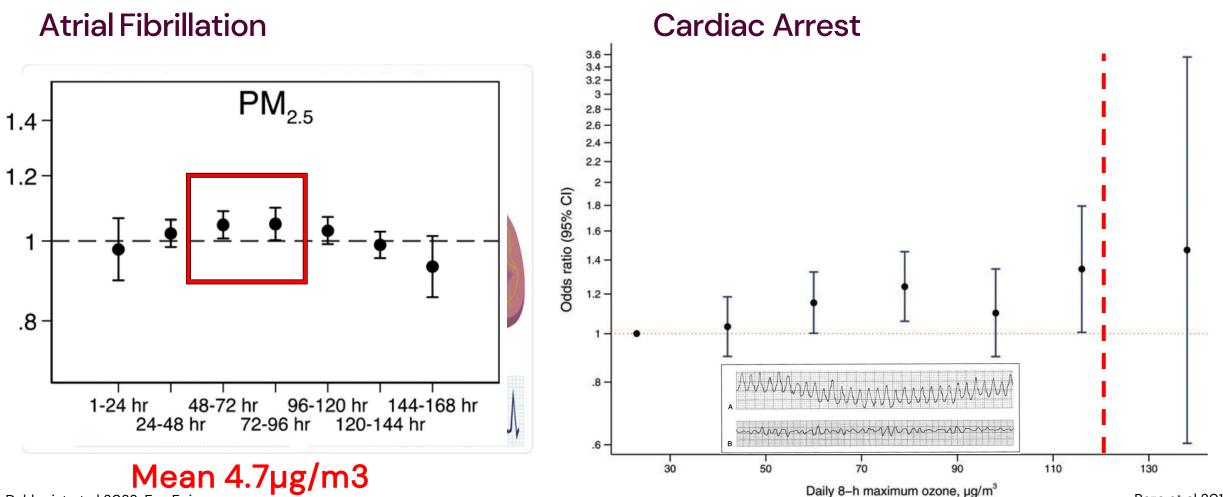

Figure 2 Regional distribution of estimated annual excess mortality rates from cardiovascular diseases (CVD = IHD + CEV) attributed to air pollution. These rates are lower limits as other non-communicable diseases are not included.

Eur Heart J, Volume 40, Issue 20, 21 May 2019, Pages 1590–1596, https://doi.org/10.1093/eurheartj/ehz135

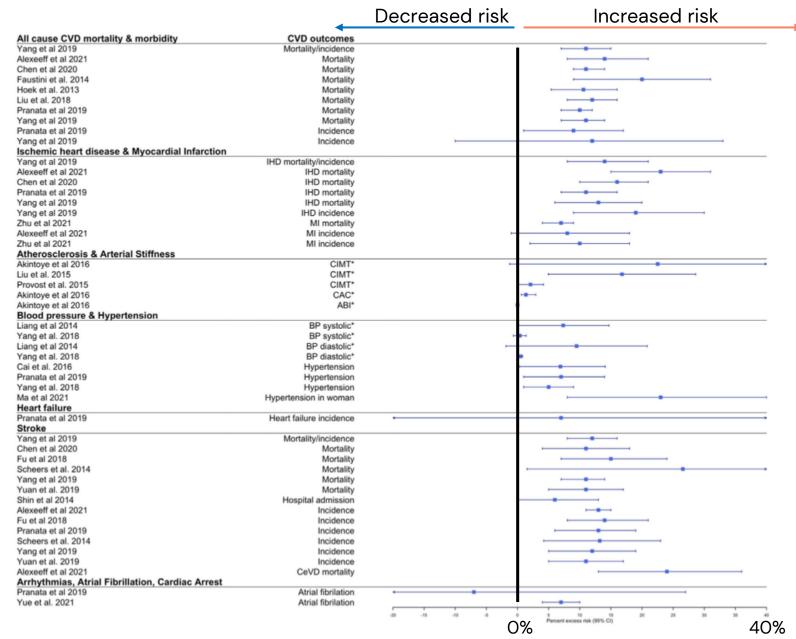
How does air pollution affect your heart?




Immediate coronary effects of diesel


Mills NEJM 2007

Air pollution increases atherosclerosis


Air pollution and arrhythmias at very low levels

Dahlquist et al 2022. Env Epi

Raza et al 2014. EHJ

56

Air pollution affects a multitude of cardiovascular outcomes

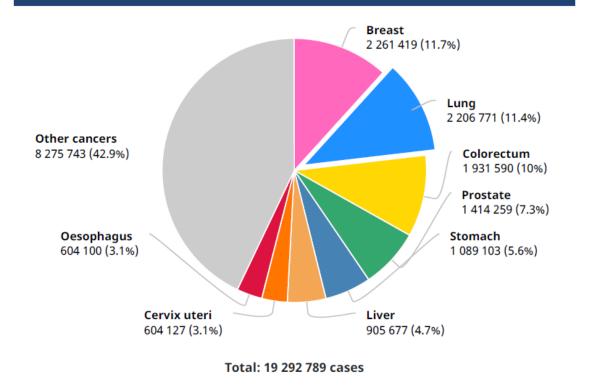
Fig. 5 Effect estimates of the association between long-term exposure to $PM_{2.5}$ and CVDs. Note: we selected the main effect estimate from the meta-analyses if multiple effect estimates were available for each CVD outcome in the same meta-analysis. Effect estimates are estimated per $10 \mu g/m^3$ range increase in $PM_{2.5}$. Abbreviations: ABI, ankle-brachial index, BP, blood pressure; CAC, coronary artery calcification; CeVD, cerebrovascular diseases; CIMT, carotid intima-media thickness test; CVD, cardiovascular diseases; IHD, ischemic heart diseases; MI, myocardial infarction; PM, particulate matter. *Beta coefficient (linear regression) for change in systolic, diastolic, CIMT, CAC, or ABI values per increase of $PM_{2.5}$.

de Bont 2022. Journal of Internal Medicine

- 1. Cardiovascular diseases are the most common causes of death and disease in the EU with considerable impacts on health and related costs
- 2. Air pollution contributes to a range of cardiovascular diseases as well as to a large proportion of all cardiovascular diseases
- 3. Stricter control of air pollution offers an effective strategy that will prevent new disease, reduce suffering and save many lives from the consequences of cardiovascular disease in the EU.

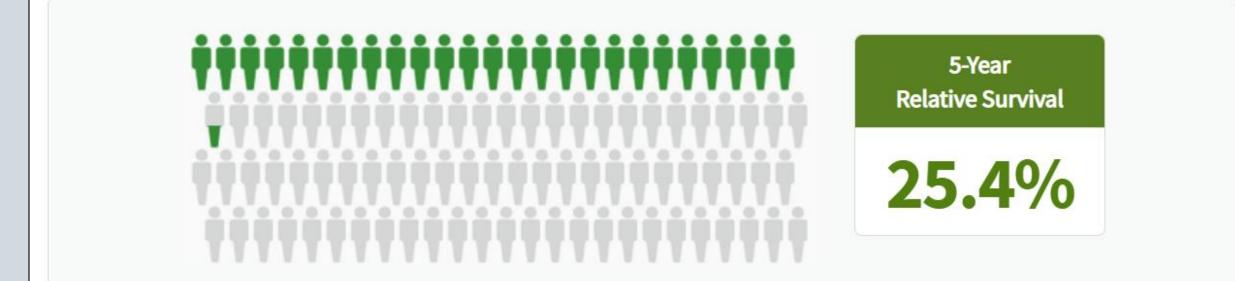
Summarising important health effects of air pollution across the life-course: Cancer

MICHELLE C TURNER, PHD ASSOCIATE RESEARCH PROFESSOR BARCELONA INSTITUTE FOR GLOBAL HEALTH (ISGLOBAL), SPAIN International Agency for Research on Cancer


World Health Organization

Lung Source: Globocan 2020

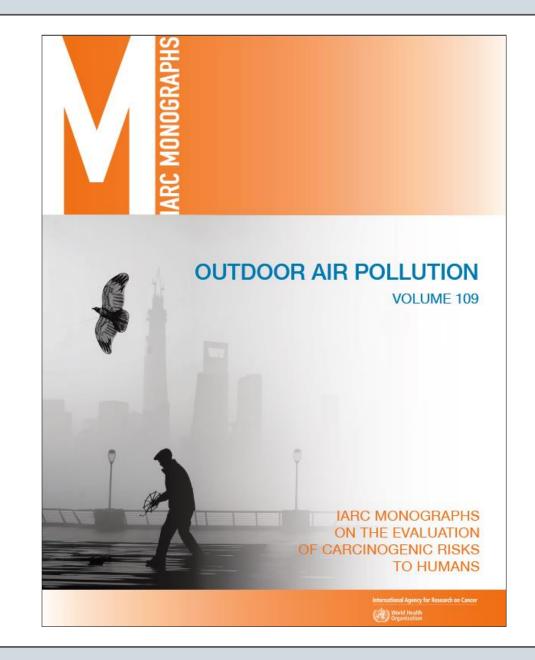
Number of new cases in 2020, both sexes, all ages


Number of deaths in 2020, both sexes, all ages

Lung 1 796 144 (18%) Other cancers 3 557 464 (35.7%) Colorectum 935 173 (9.4%) Prostate Liver 375 304 (3.8%) 830 180 (8.3%) Stomach Pancreas 466 003 (4.7%) 768 793 (7.7%) Oesophagus Breast 544 076 (5.5%) 684 996 (6.9%)

Total: 9 958 133 deaths

https://gco.iarc.fr/today/data/factsheets/cancers/15-Lung-fact-sheet.pdf



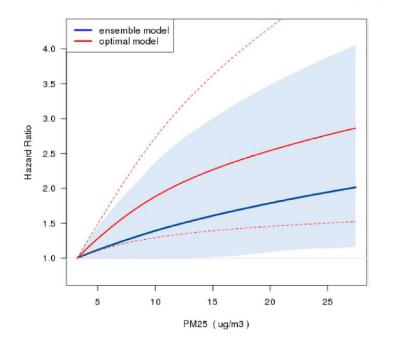
Based on data from SEER 22 (Excluding IL/MA) 2013–2019. Gray figures represent those who have died from lung and bronchus cancer. Green figures represent those who have survived 5 years or more.

https://seer.cancer.gov/statfacts/html/lungb.html

Both sexes	Global	Low SDI	Low-middle SDI	Middle SDI	High-middle SDI	High SDI	Central Asia	Central Europe	Eastern Europe	Australasia	High-income Asia Pacific	High-income North America	Southern Latin America	Western Europe	Andean Latin America	Caribbean	Central Latin America	Tropical Latin America	North Africa and Middle East	South Asia	East Asia	Oceania	Southeast Asia	Central sub-Saharan Africa	Eastern sub-Saharan Africa	Southern sub-Saharan Africa	Western sub-Saharan Africa
Occupational exposure to beryllium	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16	16
Occupational exposure to cadmium	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
Occupational exposure to chromium	14	14	14	14	14	14	14	14	14	13	13	13	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14
Occupational exposure to polycyclic aromatic hydrocarbons	13	13	13	13	13	12	13	13	13	12	12	12	13	12	13	13	13	13	1 3	1 3	13	13	13	13	13	13	13
Occupational exposure to nickel	12	11	11	11	12	11	11	11	11	10	10	11	11	10	12	12	11	11	11	11	11	11	11	11	11	11	11
Occupational exposure to arsenic	11	12	12	12	11	9	12	10	9	9	9	9	12	9	11	11	12	12	12	12	12	12	12	12	12	12	12
Occupational exposure to diesel engine exhaust	10	10	10	10	10	10	10	12	12	11	11	10	9	11	9	10	10	10	9	10	10	10	10	10	10	10	10
Occupational exposure to silica	9	9	9	9	8	8	8	8	8	7	7	8	6	8	8	8	8	7	7	9	9	9	8	8	8	9	9
Diet low in fruits	8	5	7	7	7	6	7	7	6	4	5	6	8	7	7	7	7	8	8	5	7	6	6	5	6	5	5
Household air pollution from solid fuels	7	2	3	5	9	13	9	9	10	14	14	14	10	13	5	6	6	9	10	3	5	2	3	2	2	6	2
Residential radon	6	6	8	8	6	5	4	6	3	8	8	4	7	5	6	9	5	6	6	8	6	8	9	7	7	7	6
Secondhand smoke	5	8	5	4	5	7	5	5	7	5	6	7	5	6	10	4	9	5	5	7	3	5	5	9	9	8	7
High fasting plasma glucose	4	4	4	3	3	3	3	3	5	3	4	3	4	3	3	2	3	2	3	4	4	3	4	3	3	4	4
Occupational exposure to asbestos	3	7	6	6	4	2	6	4	4	2	2	2	3	2	4	5	4	3	4	6	8	4	7	6	5	2	8
Ambient particulate matter pollution	2	3	2	2	2	4	2	2	2	6	3	5	2	4	2	3	2	4	2	2	2	7	2	4	4	3	3
Smoking	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

GBD 2019 Respiratory Tract Cancers Collaborators, 2021

Outdoor air pollution is carcinogenic to humans (<u>Group 1)</u>


- Causes lung cancer
- Positive associations with bladder cancer

Particulate matter in outdoor air pollution is carcinogenic to humans (<u>Group 1)</u>

• Causes lung cancer

Strongly supported by documented genetic and related effects in humans and experimental animals (increases in genetic damage, promotes cancer progression) Long-term low-level ambient air pollution exposure and risk of lung cancer – A pooled analysis of 7 European cohorts

Ulla Arthur Hvidtfeldt ^{a,*}, Gianluca Severi ^{b,c}, Zorana Jovanovic Andersen ^d, Richard Atkinson ^e, Mariska Bauwelinck ^f, Tom Bellander ^{g,h}, Marie-Christine Boutron-Ruault ^b, Jørgen Brandt ^{i,j}, Bert Brunekreef ^k, Giulia Cesaroni ¹, Jie Chen ^k, Hans Concin ^m, Francesco Forastiere ^{n,o}, Carla H. van Gils ^p, John Gulliver ^q, Ole Hertel ⁱ, Gerard Hoek ^k, Barbara Hoffmann ^r, Kees de Hoogh ^{s,t}, Nicole Janssen ^u, Karl-Heinz Jöckel ^v, Jeanette Therming Jørgensen ^d, Klea Katsouyanni ^{w,x}, Matthias Ketzel ^{i,y}, Jochem O. Klompmaker ^{k,u}, Norun Hjertager Krog ^z, Alois Lang ^{aa}, Karin Leander ^g, Shuo Liu ^d, Petter L.S. Ljungman ^{g,ab}, Patrik K.E. Magnusson ^{ac}, Amar Jayant Mehta ^{ad,ae}, Gabriele Nagel ^{af,m}, Bente Oftedal ^z, Göran Pershagen ^{g,h}, Raphael Simon Peter ^{af}, Annette Peters ^{ah,ai}, Matteo Renzi ¹, Debora Rizzuto ^{aj,ak}, Sophia Rodopoulou ^w, Evangelia Samoli ^w, Per Everhard Schwarze ^{al}, Torben Sigsgaard ^{am}, Mette Kildevæld Simonsen ^{an}, Massimo Stafoggia ^{l,g}, Maciek Strak ^{k,u}, Danielle Vienneau ^{s,t}, Gudrun Weinmayr ^{af}, Kathrin Wolf ^{ah}, Ole Raaschou-Nielsen ^{a,i,1}, Daniela Fecht ^{ao,1}

Review article

Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis

Jie Chen*, Gerard Hoek

Institute for Risk Assessment Sciences, Utrecht University, the Netherlands

Table 2

Pooled effect estimates for all pollutant-outcome combinations.

	PM _{2.5}			
	N	pooled RR per 10 $\mu\text{g/m}^3$	I ² (%)	Prediction interval
Natural-cause	25	1.08 (1.06, 1.09)	88.9	(1.05, 1.11)
Circulatory	21	1.11 (1.09, 1.14)	72.1	(1.06, 1.17)
IHD	22	1.16 (1.10, 1.21)	77.5	(1.04, 1.29)
Stroke	16	1.11 (1.04, 1.18)	84.7	(0.98, 1.25)
Respiratory	17	1.10 (1.03, 1.18)	83.6	(0.95, 1.29)
COPD	11	1.11 (1.05, 1.17)	49.6	(1.02, 1.21)
ALRI	4	1.16 (1.01, 1.34)	83.0	(0.88, 1.54)
Lung cancer	15	1.12 (1.07, 1.16)	39.4	(1.05, 1.18)

N = number of studies

Conclusions: Long-term ambient $PM_{2.5}$ exposure is associated with lung cancer incidence even at concentrations below current EU limit values and possibly WHO Air Quality Guidelines.

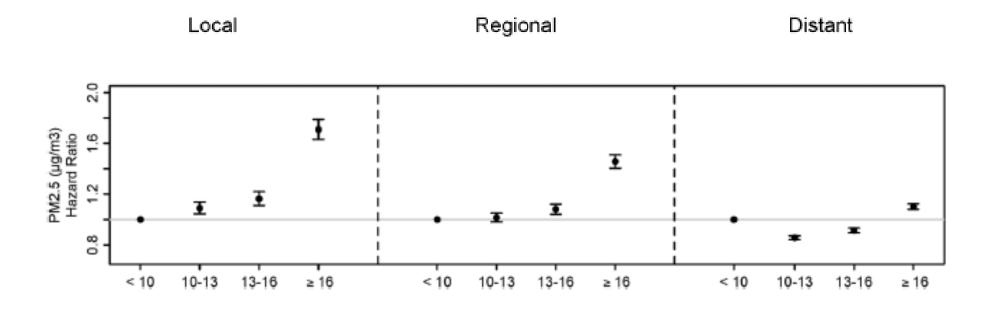
The international journal of science / 6 April 2023

nature Air pollution drives lung cancer in non-smokers Treatment boost Warming waters **Dark of the Moon** Lunar eclipse records The push to create Define marine a new generation of heatwayes to help shed light on medieval coastal communities volcanic activity Alzheimer's therapies

Lung adenocarcinoma promotion by air pollutants

https://doi.org/10.1038/s41586-023-05874
Received: 17 June 2022
Accepted: 21 February 2023
Published online: 5 April 2023
Check for updates

William Hill^{1,126}, Emilia L. Lim^{1,2,126,127}, Clare E. Weeden^{1,126}, Claudia Lee^{1,2,3}, Marcellus Augustine^{1,2,3,4}, Kezhong Chen^{2,5}, Feng-Che Kuan^{6,7}, Fabio Marongiu^{8,9}, Edward J. Evans Jr⁸, David A. Moore^{1,2,10}, Felipe S. Rodrigues¹¹, Oriol Pich¹, Bjorn Bakker¹, Hongui Cha^{2,12}, Renelle Myers¹³, Febe van Maldegem^{14,15}, Jesse Boumelha¹⁴, Selvaraju Veeriah², Andrew Rowan¹, Cristina Naceur-Lombardelli², Takahiro Karasaki^{1,2,16} Monica Sivakumar², Swapnanil De², Deborah R. Caswell¹, Ai Nagano^{1,2}, James R. M. Black^{2,17}, Carlos Martínez-Ruiz^{2,17}, Min Hyung Ryu¹⁸, Ryan D. Huff¹⁸, Shijia Li¹⁸, Marie-Julie Favé¹⁹, Alastair Magness^{1,2}, Alejandro Suárez-Bonnet^{20,21}, Simon L. Priestnall^{20,21}, Margreet Lüchtenborg^{22,23}, Katrina Lavelle²², Joanna Pethick²², Steven Hardy²², Fiona E. McRonald²², Meng-Hung Lin²⁴, Clara I. Troccoli^{8,25}, Moumita Ghosh²⁶, York E. Miller^{26,27}, Daniel T. Merrick²⁸, Robert L. Keith^{26,27}, Maise Al Bakir^{1,2}, Chris Bailey¹, Mark S. Hill¹, Lao H. Saal^{29,30}, Yilun Chen^{29,30}, Anthony M. George^{29,30}, Christopher Abbosh², Nnennaya Kanu², Se-Hoon Lee¹², Nicholas McGranahan^{2,17}, Christine D. Berg³¹, Peter Sasieni³², Richard Houlston³³, Clare Turnbull³³, Stephen Lam¹³, Philip Awadalla¹⁹, Eva Grönroos¹, Julian Downward¹⁴, Tyler Jacks^{34,35}, Christopher Carlsten¹⁸, Ilaria Malanchi¹¹, Allan Hackshaw³⁶, Kevin Litchfield^{2,4}, TRACERx Consortium^{*}, James DeGregori^{8,127}, Mariam Jamal-Haniani^{2,16,37,127} & Charles Swanton^{1,2,37}


Collectively, these data, combined with published evidence⁶, indicate that there is an association between the estimated incidence of *EGFR*-driven lung cancer and of $PM_{2.5}$ exposure levels and that 3 years of air pollution exposure may be sufficient for this association to manifest.

In conclusion, our data suggest a mechanistic and causative link between air pollutants and lung cancer, as previously proposed⁴⁵, and substantiate earlier findings on tumour promotion¹, providing a public health mandate to restrict particulate emissions in urban areas.

ORIGINAL ARTICLE

Air pollution affects lung cancer survival

Sandrah P Eckel,¹ Myles Cockburn,¹ Yu-Hsiang Shu,^{1,2} Huiyu Deng,¹ Frederick W Lurmann,³ Lihua Liu,¹ Frank D Gilliland¹

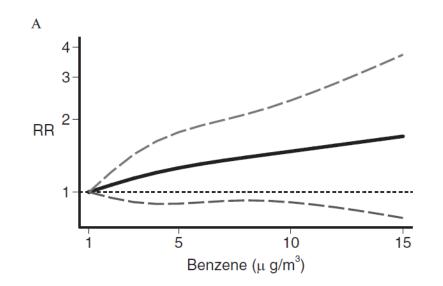
Outdoor Air Pollution and Cancer: An Overview of the Current Evidence and Public Health Recommendations

Michelle C. Turner, PhD (D^{1,2,3,4}; Zorana J. Andersen, PhD (D⁵; Andrea Baccarelli, MD, MPH, PhD (D⁶; W. Ryan Diver, MSPH (D⁷; Susan M. Gapstur, PhD (D⁷; C. Arden Pope, III, PhD (D⁸; Diddier Prada, MD, PhD (D^{6,9}; Jonathan Samet, MD, MS¹⁰; George Thurston, ScD (D¹¹; Aaron Cohen, DSc^{12,13})

There is clear and substantial evidence of a link between outdoor ambient air pollution, and particularly PM in outdoor air, with lung cancer

This is an urgent worldwide public health challenge requiring multiple multilevel public health and policy interventions for cancer prevention

Expanding literature on air pollution and other cancers


Ambient Air Pollution and Cancer Mortality in the Cancer Prevention Study II

Breast Cancer Incidence in Relation to Long-Term Low-Level Exposure to Air Pollution in the ELAPSE Pooled Cohort

Long-term exposure to ambient air pollution and bladder cancer incidence in a pooled European cohort: the ELAPSE project

Long-term exposure to air pollution and liver cancer incidence in six European cohorts

Association between Outdoor Air Pollution and Childhood Leukemia: A Systematic Review and Dose-Response Meta-Analysis

Thank you

Thank you and keep in touch!

