A proposal for sensitivity analyses of the health impacts of PM$_{2.5}$ and NO$_2$ in Europe, in support of the revision of the EU ambient Air Quality Standards for these pollutants

Authors: Bert Brunekreef1, Zorana J Andersen2, Francesco Forastiere3, Barbara Hoffmann4, Hanna Boogaard5

1 Environmental Epidemiology IRAS, University of Utrecht
2 Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, European Respiratory Society (ERS)
3 School of Public Health, Imperial College, London
4 Institute for Occupational, Social and Environmental Medicine, Medical Faculty, University of Düsseldorf, European Respiratory Society (ERS)
5 Health Effects Institute, Boston, the US, International Society for Environmental Epidemiology (ISEE)

Summary

To estimate the potential benefit of air pollutant reductions adequately, health impact assessment (HIA) and cost-benefit analyses (CBA) need to include the latest and most relevant information on the relationships between air pollutants and health outcomes. Effect estimates from the ELAPSE (Effects of Low-Level Air Pollution: A Study in Europe) study represent the largest and most relevant data for Europe to date.

We recommend the following sensitivity analyses for inclusion in the HIA and CBA to inform the revision of the EU Ambient Air Quality Directive:

All-cause mortality for long-term PM$_{2.5}$ and NO$_2$ using the pooled ELAPSE results

- summary estimate for PM$_{2.5}$ 1.118 (1.060 – 1.179) per 10 μg/m3
- summary estimate for NO$_2$ 1.045 (1.026 – 1.065) per 10 μg/m3

Rationale

Health impact assessment (HIA) and cost-benefit analyses (CBA) play a major role in the revision of the EU Ambient Air Quality Directive (AAQD), as they quantify the health benefits of pollutant reductions. In this note, we consider the recent body of evidence on the effects of long-term exposure to fine particulate matter (PM$_{2.5}$) and nitrogen dioxide (NO$_2$) on total mortality (natural causes). We discuss the rationale for conducting sensitivity analyses of the EU HIA using a different exposure-response estimate for PM$_{2.5}$ and NO$_2$ with mortality, based on the ELAPSE study.

Mortality impacts for Europe, calculated since 2014 in the annual ‘Air Quality in Europe’ reports published by the European Environment Agency (EEA), have used relative risk estimates published by (Hoek et al., 2013). These estimates are based on evidence published before 2011. The summary estimates were 1.06 (1.04 – 1.08) for PM$_{2.5}$ and 1.05 (1.03 – 1.08) for NO$_2$, both per 10 μg/m3. The EEA, in its 2021 HIA, assumed no threshold for PM$_{2.5}$, and a threshold of 20 μg/m3 for NO$_2$. Based on these
premises, the premature mortality in the EU27 due to PM$_{2.5}$ and due to NO$_2$ in 2019 in the EU was 307,000 and 40,400 deaths, respectively (EEA 2021).

In support of the recent development of the 2021 WHO Air Quality Guidelines, new systematic reviews of the evidence of effects of air pollutants on mortality (Chen & Hoek, 2020) (Huangfu & Atkinson, 2020) were published in 2020. These reviews include studies conducted in all parts of the world and across a wide range of exposure levels. The linear summary estimates from these global systematic reviews are used in the current HIA and CBA informing the revision of the EU AAQD. The systematic review on PM$_{2.5}$ and total mortality documented a summary estimate of 1.08 per 10 μg/m3 with a confidence interval of (1.06 – 1.09), based on 25 studies (Chen & Hoek, 2020). The systematic review on NO$_2$ and total mortality reported a summary estimate of 1.02 per 10 μg/m3 with a confidence interval of (1.01 – 1.04), based on 24 studies (Huangfu & Atkinson, 2020).

These systematic reviews were published in 2020 and included studies available until September 2018. Since then, important new European studies have been published. We propose that a sensitivity analysis should be conducted based on these new studies to ensure that the HIA to inform the revision of the AAQD considers the most recent and relevant evidence. In particular, we recommend the use of the exposure-response estimate from ELAPSE (Effects of Low-Level Air Pollution: A Study in Europe). ELAPSE is the largest study in Europe by far, and represents the latest and most relevant data for Europe. It includes data from studies on about 30 million participants in 11 EU countries, almost all of whom were exposed to levels of PM$_{2.5}$ and NO$_2$ below current EU limit values (Strak et al., 2021) (Stafoggia et al., 2022) (Brunekreef et al., 2021). Several other European studies have been published in recent years as well, and we have included those results as well for comparison and completeness.

Mortality estimates from recent European studies

The results of the ELAPSE study for associations of PM$_{2.5}$ with total mortality is shown in Figure 1 (Brunekreef et al., 2021). The figure includes the estimates from a large pooled cohort study of eight individual cohorts from six EU countries, and 7 separate very large nationwide or citywide administrative cohorts. Importantly, all estimates adjusted for smoking and other important lifestyle and social factors. The summary estimate for PM$_{2.5}$ is 1.118 (1.060 – 1.179) per 10 μg/m3, which is larger than the 1.08 summary estimate from the WHO systematic review (Chen & Hoek, 2020).
Figure 1: Total mortality and long-term PM$_{2.5}$ from ELAPSE (Brunekreef et al., 2021).*

*indirectly adjusted estimates for smoking for the 6 administrative cohorts (Table 22). The English CPRD cohort adjusted for smoking directly (Figure 14). The pooled cohort adjusted for smoking as well, and the time varying effect estimate was extracted (Table 10).

Figure 2 shows the results of ELAPSE for NO$_2$. This figure again includes the estimates from a large pooled cohort study including data from eight cohorts from six EU countries, and 7 separate very large administrative cohorts (Brunekreef et al., 2021). As for PM$_{2.5}$, these estimates represent analyses adjusted for smoking and other important lifestyle and social factors. The summary estimate is 1.045 (1.026 – 1.065) per 10 μg/m3, which is larger than the 1.02 effect estimate from the WHO systematic review (Huangfu & Atkinson, 2020).

Figure 2. Total mortality and long-term NO$_2$ from ELAPSE (Brunekreef et al., 2021).*

*indirectly adjusted estimates for smoking for the 6 administrative cohorts (Table 22). The English CPRD cohort adjusted for smoking directly (Figure 14). The pooled cohort adjusted for smoking as well, and the main exposure effect estimate was extracted since no difference with time-varying exposure estimate was extracted (Table 9).
Figures 3 and 4 show the mortality results of other recent European studies for long-term PM$_{2.5}$ and NO$_2$, respectively, which were published after the deadline of the WHO systematic reviews. The results from these studies are compared to the summary estimates from the WHO systematic reviews (red vertical line) and the summary estimate from the ELAPSE study. The findings corroborate the conclusions drawn from the ELAPSE study, namely that the PM$_{2.5}$ and NO$_2$ effects on mortality in Europe are larger than the estimates of the global WHO systematic reviews.

<table>
<thead>
<tr>
<th>Author and year</th>
<th>Area</th>
<th>HR [95% CI] per 10 µg/m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen & Hoek 2020 (WHO Systematic review)</td>
<td></td>
<td>1.080 [1.060, 1.090]</td>
</tr>
<tr>
<td>ELAPSE pooled estimates (Figure 1)</td>
<td></td>
<td>1.118 [1.060, 1.179]</td>
</tr>
<tr>
<td>Other European Studies published after Chen & Hoek 2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fischer 2020</td>
<td>Netherlands</td>
<td>1.172 [1.138, 1.195]</td>
</tr>
<tr>
<td>Hvidtfeldt 2019</td>
<td>Copenhagen & Aarhus, Denmark</td>
<td>1.277 [1.103, 1.464]</td>
</tr>
<tr>
<td>Nieuwenhuijsen 2018</td>
<td>Barcelona, Spain</td>
<td>1.061 [0.980, 1.124]</td>
</tr>
<tr>
<td>Raechou-Nielsen 2020</td>
<td>Denmark</td>
<td>1.080 [1.040, 1.130]</td>
</tr>
<tr>
<td>So 2020</td>
<td>Denmark</td>
<td>1.142 [1.023, 1.242]</td>
</tr>
<tr>
<td>So 2022</td>
<td>Denmark</td>
<td>1.232 [1.180, 1.270]</td>
</tr>
<tr>
<td>Sommar 2021</td>
<td>Umeå, Sweden</td>
<td>1.082 [0.937, 1.168]</td>
</tr>
<tr>
<td>Sommar 2021</td>
<td>Stockholm, Sweden</td>
<td>1.638 [1.000, 2.690]</td>
</tr>
<tr>
<td>Sommar 2021</td>
<td>Gothenburg, Sweden</td>
<td>0.656 [0.336, 1.300]</td>
</tr>
<tr>
<td>Sommar 2021</td>
<td>Gothenburg, Sweden</td>
<td>1.613 [1.188, 2.220]</td>
</tr>
<tr>
<td>Wang 2022</td>
<td>United Kingdom</td>
<td>1.270 [1.050, 1.550]</td>
</tr>
</tbody>
</table>

Figure 3. Total mortality and long-term PM$_{2.5}$ from other European studies published since the WHO systematic review by Chen & Hoek (2020).*

*Red line indicates the summary estimate from the systematic review by Chen & Hoek (2020). Range of mean PM$_{2.5}$ exposure in European studies from 5.8 to 20.5 µg/m3.

Additional considerations: larger associations at lowest concentrations

Recent studies have documented the supra-linear form of the exposure-response relationship between long-term exposure to PM$_{2.5}$ and NO$_2$ with multiple health outcomes, ‘supra-linear’ to be understood as higher effect estimates per additional microgram of exposure at low pollutant concentrations than at high concentrations (see, for instance, (Burnett et al., 2018)). The ELAPSE study made a systematic effort to estimate associations in sub-populations exposed to concentrations below certain cut-points in Europe. Those results are summarized in tables 7 and 20 of the main report (Brunekreef et al., 2021). They show that in the pooled cohort of eight cohorts from six EU countries, the effect estimate for PM$_{2.5}$ was about twice higher in the sub-population exposed to concentrations below 15 µg/m3 than in the full population. The sub-population contained about half of all study participants. For NO$_2$, the effect estimate was about 30% higher in the sub-population exposed to concentrations below 30 µg/m3 than in the full population. The sub-population contained about 75% of all study participants. Analyses of the exposure-response function supported this finding, showing a supra-linear curve (Figure 5).
In the 7 administrative cohorts within ELAPSE, the effect estimate for PM\textsubscript{2.5} was about 80% higher in the sub-population exposed to concentrations below 12 μg/m3 than in the full population. The sub-population contained about 4.5 Million study participants. For NO\textsubscript{2}, the effect estimate was about 40% higher in the sub-population exposed to concentrations below 20 μg/m3 than in the full population. The sub-population contained about 6 million study participants. Analyses of the exposure-response function supported this finding, showing supra-linear curves for most of the cohorts (Stafoggia et al., 2022). As the administrative cohorts were very large, precise and statistically significant effect estimates could still be obtained from those subgroup analyses.

Because those subgroup analyses are not usually conducted in other studies, we do not propose to use these even higher effect estimates in sensitivity analyses, in part because of the smaller sample sizes, and the importance of generalizability for use in HIA. They support the use of the ELAPSE effect estimates as shown in Figures 1 and 2 as an additional sensitivity analyses.

Additional considerations: air pollution and morbidity

The above considerations are restricted to effects on mortality only, which contribute to the years of life lost due to air pollution. They do not cover morbidity outcomes, which translate into years lived with disability, the second major component of the burden of disease. Recent reviews document that air pollution is associated with a growing list of various diseases (e.g., Thurston et al., 2017). ELAPSE also documented clear associations between long-term exposure to PM\textsubscript{2.5} and/or NO\textsubscript{2} and the incidence of lung cancer (Hvidtfeldt et al., 2021), coronary and cerebrovascular events (Wolf et al., 2021), COPD (Liu et al., 2021a), asthma (Liu et al., 2021b), and liver cancer (So et al., 2021). Furthermore, long-term NO\textsubscript{2} exposure in urban areas was associated with asthma onset in children (Anenberg et al., 2022). In addition, new emerging evidence reports a likely association of air pollution...
with diabetes, low birth weight, preterm births, cognitive decline and dementia, Parkinson’s Diseases, impaired cognitive development in children, and mental health outcomes throughout lifetime (Thurston et al., 2017). These associations may lead to in sick days, doctor visits, need for medication and hospital care, and accumulating huge costs related to health care, loss in productivity, and reducing quality of life.

Several systematic reviews have been conducted recently on which a comprehensive impact assessment of the years lived with disability due to PM$_{2.5}$ and NO$_2$ could be based. For example, the UK has undertaken a comprehensive assessment of morbidity outcomes, including stroke incidence, asthma incidence in children, and lung cancer incidence (Public Health England, 2018). The Swedish EPA has recently published a report (in Swedish only, but it will be translated in English shortly) assessing which morbidity impacts of air pollution can be included in HIA. A similar effort has been undertaken in France (ANSES, 2019). At WHO, multiple efforts are underway to inform exposure-response estimates for morbidity outcomes for use in HIA, such as the Estimation of Morbidity from Air Pollution and its Economic Costs project (EMAPEC), and an active Global Air Pollution and Health - Technical Advisory Group (GAPH-TAG).

We want to emphasize that the WHO systematic reviews have – only due to lack of resources – ignored the effects of long-term exposure of air pollution on morbidity. The current HIA is underestimating the health benefits of air pollution reductions by not quantifying the various morbidity outcomes.

Additional considerations: overlap of effects from PM$_{2.5}$ and NO$_2$

PM$_{2.5}$ and NO$_2$ are typically positively correlated and calculating the overall health impacts needs to take this into account. It is beyond the scope of this document to provide a review of joint effect estimates for the purpose of HIA. In general, the joint effect estimates will depend on the relative pollutant concentrations, and on the extent to which the single-pollutant effect estimates are being reduced by adjustment for the second pollutant.

Conclusions

We propose using the summary estimates for PM$_{2.5}$ and NO$_2$ for mortality from ELAPSE in the HIA and CBA conducted for the revision of the EU AAQD. They represent the largest and most relevant evidence on health effects currently available for Europe. The following sensitivity analyses of mortality for long-term PM$_{2.5}$ and NO$_2$ are recommended: summary estimate for PM$_{2.5}$ of 1.118 (1.060 – 1.179) per 10 μg/m3 and summary estimate for NO$_2$ of 1.045 (1.026 – 1.065) per 10 μg/m3.
References

ANSES. (2019). *Particulate matter in ambient air. Health effects according to components, sources and particle size*. Retrieved from France:

