Digital Approaches to Promote Adherence to Treatments and Patient Education

Dr Omar S Usmani, *MBBS PhD FHEA FRCP FERS*

Reader in Respiratory Medicine, Imperial College London

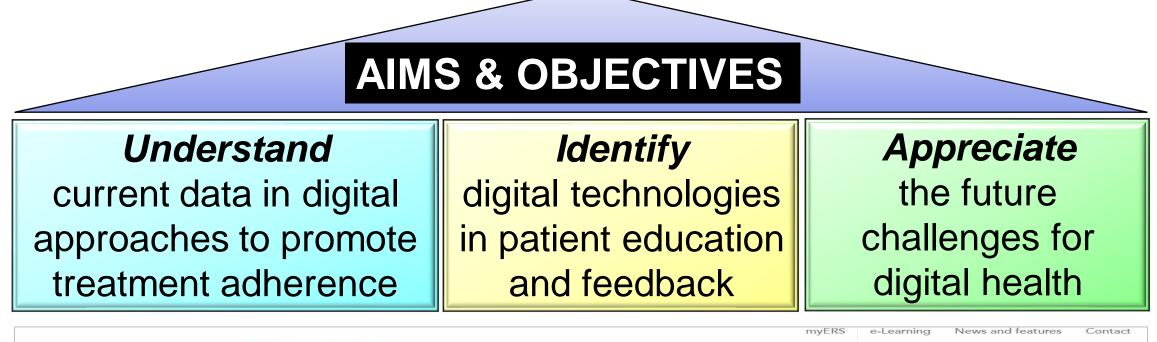
& Consultant Physician, Royal Brompton Hospital

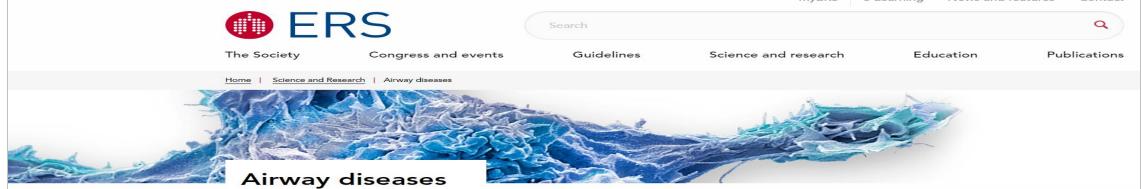
Head of ERS Assembly 5 : Airway Diseases, Asthma, COPD, Chronic Cough

Imperial College London

Digital Respiratory Medicine – Realism v Futurism A Digital Health Summit of the ERS

Faculty Disclosure


Research Funding, Advisory Boards, Symposia Talks


- Astra Zeneca
- Boehringer Ingelheim
- Chiesi
- Cipla
- Covis
- GlaxoSmithKline
- Menarini
- Mereo Biopharma
- Mundipharma

- NAPP
- Novartis
- Orion
- Pfizer
- Roche
- Sandoz
- Trudell Medical
- Takeda
- UCB

I have no shares in any pharmaceutical company I have no relationship of any kind with the tobacco industry

Digital Approaches to Promote Adherence to Treatments and Patient Education

Suboptimal Treatment Adherence is Common and Associated with Poor Disease Control and Outcomes¹⁻³

Asthma

• Real-life adherence rates range from

8 - 70%⁵⁻⁷

 Low treatment adherence is associated with an increased risk of severe exacerbations⁴

COPD

• Real-life adherence rates range from

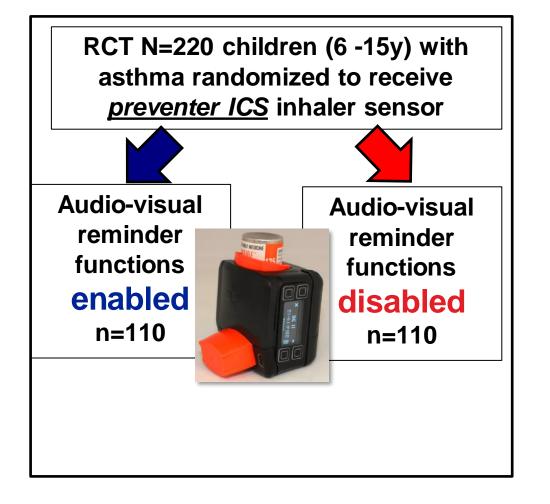
20 - 60%[°]

 Low treatment adherence is associated with increased mortality⁸

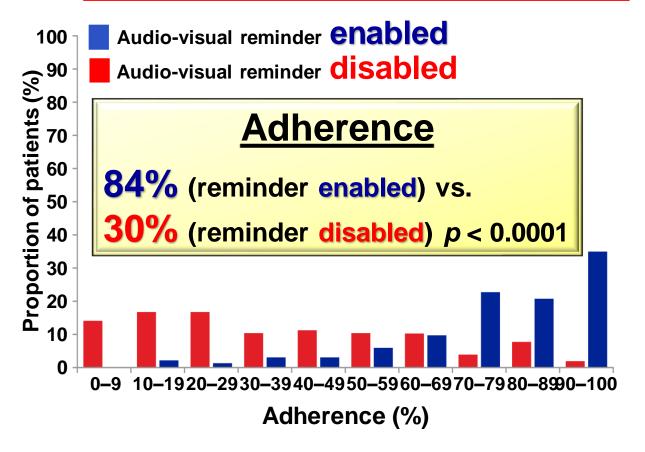
1. Global Initiative for Asthma (GINA). <u>http://ginasthma.org;</u> 2. Melani AS et al, Resp Med 2011; 3. Murphy AC et al, Thorax 2012; 4. Engelkes M et al, ERJ 2015; 5. Breekveldt-Postma NS et al, Pharmacoepi Drug Saf 2008; 6. Rand CS et al, AJRCCM 1994; 7. Horne R. CHEST 2006; 8. Vestbo J et al, Thorax 2009; 9. Moran C, et al. Psychology & Health. 2017

The Focus of Digital Technology

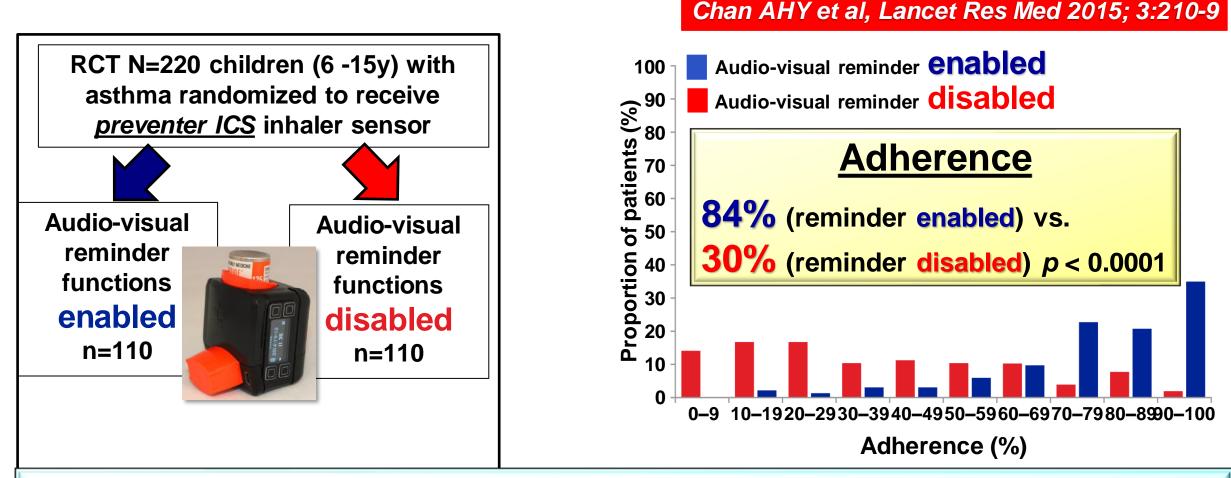
Monitoring medication use remotely to identify those patients poorly controlled in need of additional attention to help to achieve better disease control


Kikidis et al, JAMPDD 2016, Vol 29; No. 3

The Digital Asthma Patient: The History and Future of Inhaler Based Health Monitoring Devices

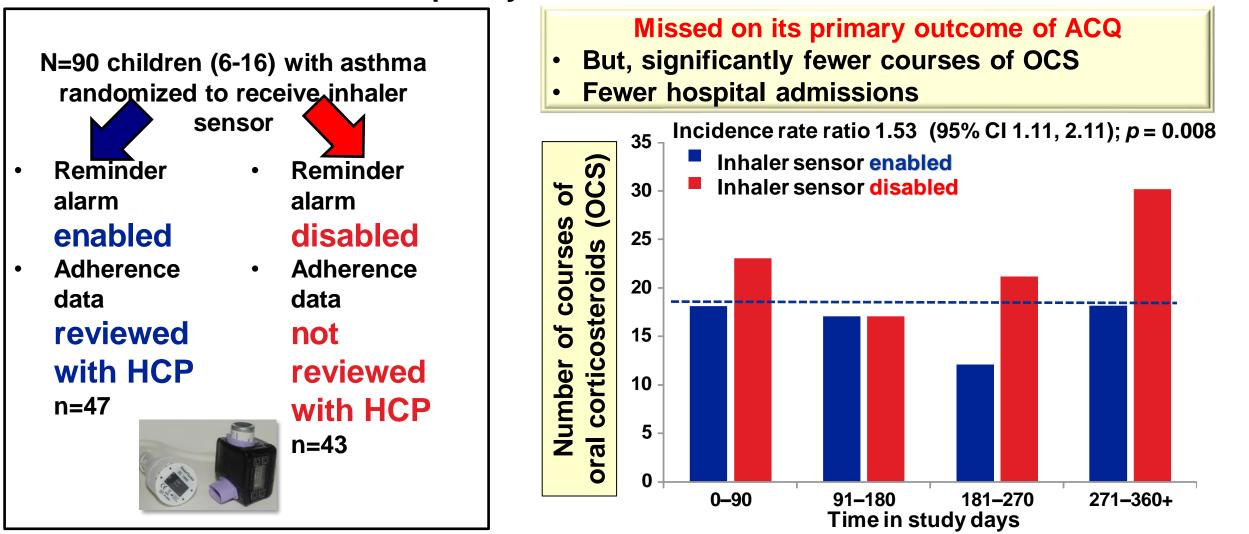

				-,			, -		
	~	myAirCoach	Sensohaler	Propeller	Chameleon	GeckoCap	SmartInhaler	T-haler	
	Time Tracking of Inhaler Use	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	Location Tracking of Inhaler Use	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	
Monitoring components	Proper Inhaler Device Use	Acoustical Sensing	Acoustical Sensing	×	×	×	×	Accelerometer Inhalation flow	
	Environment Sensing	Temp. Humid. Pollut.	×	×	×	×	×	×	
	Clinical State Monitoring	FeNO, PH, Acoustic (Wheeze)	×	×	×	×	×	×	
	Lifestyle Monitoring	Accelerometer	×	×	×	×	×	×	
	Reminders	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Self-management components	Doctor/Patient Communication	Collaboration on community basis	\checkmark	\checkmark	\checkmark	\checkmark	×	×	
	Information Visualization	Novel Visual Analytics	×	×	×	×	×	×	
	Predictive Decision Support	Doctor and Patient Support	×	×	×	×	×	×	
	Education and Feedback Support	Risks, Medication and Devices	×	×	Child Oriented Gamification	Child Oriented Gamification	×	×	
	Patient and Lung Function Models	Novel modeling approaches	×	×	×	×	×	×	
	Customised/Personalised Treatment	Co-design of interventions	×	×	×	×	×	×	
	Patient Community Platform	mHealth2.0	×	×	×	×	×	×	

Support


Inhaler Sensors Can Improve Adherence in Asthma

Chan AHY et al, Lancet Res Med 2015; 3:210-9

Inhaler Sensors Can Improve Outcomes in Asthma


Asthma control (secondary endpoint) improved significantly

Intervention may be beneficial for improving asthma control where poor asthma control is related to poor adherence

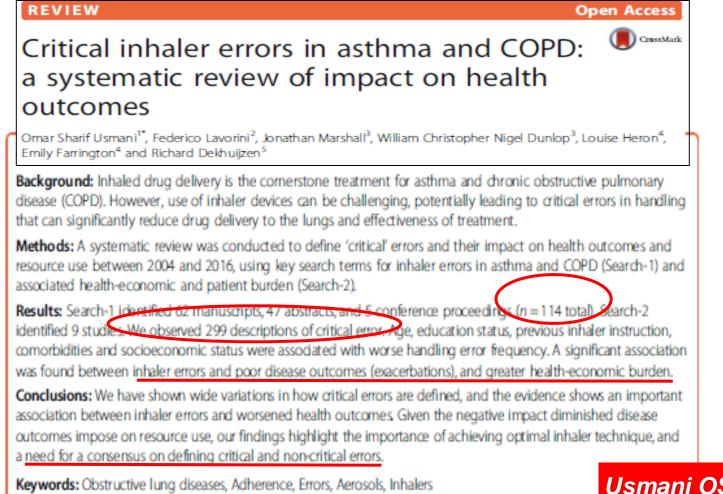
Inhaler Sensors Can Improve Outcomes in Asthma

Morton RW et al. Thorax 2017;72:347–54

STAAR trial of electronic adherence monitoring, with reminder alarms and feedback, for poorly controlled asthma

However

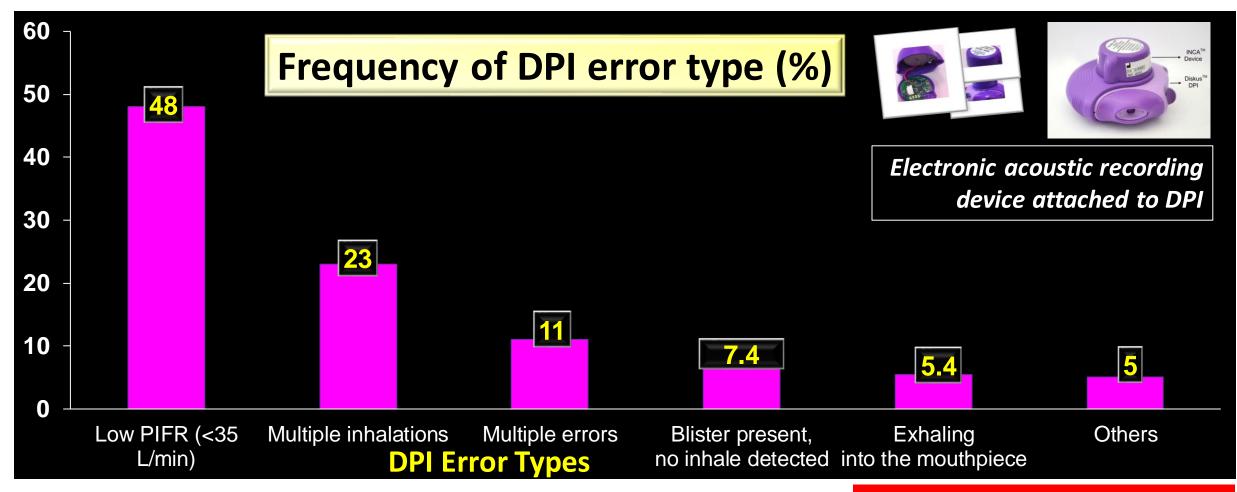
Morton RW et al. Thorax 2017;72:347–54


STAAR trial of electronic adherence monitoring, with reminder alarms and feedback, for poorly controlled asthma

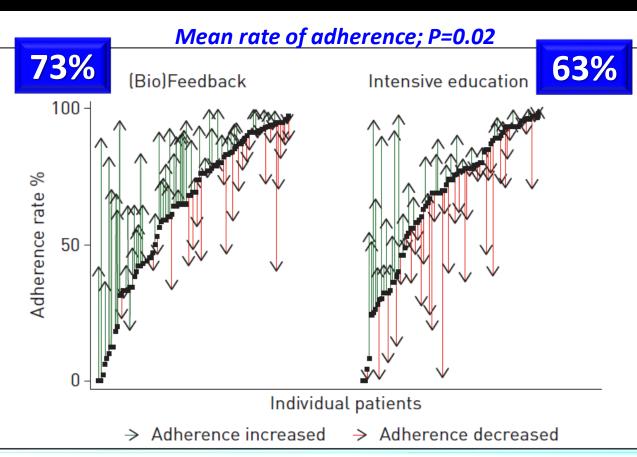
When overtly monitored, more likely to report broken, forgotten, lost device as the approach was disliked ... deliberate?

Table 5 Broken, forgotten and l	lost devices		
	Intervention (47 participants)	Control (42 participa	nts)
Device reported as 'broken' by child	23 (50%)	8 (19%)	
Devices damaged beyond repair (when inspected by study team, requiring replacement device)	17 (37%)	2 (5%)	
Participant forgot to bring device to clinic	10 (22%)	18 (43%)	
Device lost completely	5 (11%)	2 (5%)	alle alle

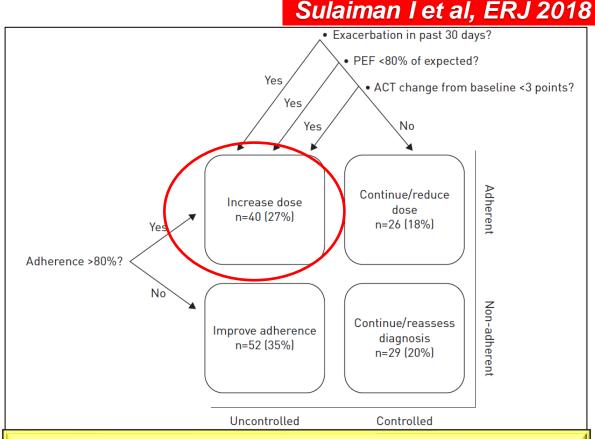
Not Just Monitoring Adherence - Also Inhaler Technique


Errors in Inhaler Technique have a Significant Association with Poor Disease Outcomes and Greater Health-economic Burden

Usmani OS et al, Resp Res 2018


Objective E-Measurement of Inhaler Technique

INCA[™] Technology : Identifying Inhaler Technique Errors



Sulaiman I et al, AJRCCM 2017

Monitored Adherence, Inhaler Technique & Patient Outcomes A randomised clinical trial of feedback on patients with severe uncontrolled asthma

Monitored adherence, including inhaler technique and regularity of use, with personalised (bio)feedback on inhaler use, significantly increased and sustained adherence in patients with severe uncontrolled asthma

Clinical outcomes at the end of the study show that after the monitored adherence programme, only 27% of patients needed additional medication as the next step

Start with the End-user : Patient-centered Design

Perspectives of patients and healthcare professionals on mHealth for asthma

self-management

EUROPEAN RESPIRATORY journal of the ers

Andrew J. Simpson¹, Persijn J. Honkoop², Erika Kennington³, Jiska B. Snoeck-Stroband², Ian Smith², Jessica East³, Courtney Coleman³, Ann Caress¹, Kian Fan Chung⁴, Jacob K. Sont², Omar Usmani⁴ and Stephen J. Fowler¹

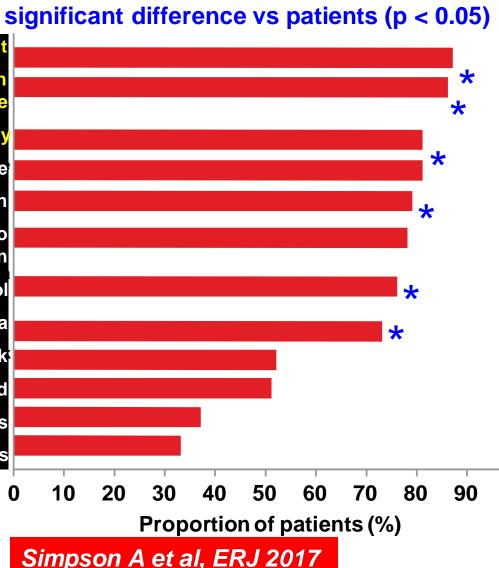
<u>AIM</u>: Determine perspectives of asthma patients and HCPs on the use and functionality of mHealth systems for asthma self-management

Simpson A et al, ERJ 2017

What *Patients* would like from an mHealth system ? A Device / system ...

1 to help patients monitor their asthma over time								
2 to collect data that patients can show their doctor/healthcare professional to demonstrate how their asthma has been								
3 that detects and alerts patients and/or healthcare professionals to a deterioration in their asthma control before they would normally notice								
that can take measurements and update a patient's medical record								
that offers advice regarding when additional medical attention should be sought								
that can be used to call for emergency help during an asthma attack								
for patients to use as their asthma action plan								
that provides instructions on how to manage their asthma in an emergency								
to record treatment side effects								
that can tell if changes to patient's asthma medication have improved their asthma control								
that could replace routine (e.g. annual) asthma check-ups								
to offer educational materials about asthma								
	0	10	20	30	40	50	60	70
	Pro	oport	ion o	of pati	ents	(%)		

Simpson A et al, ERJ 2017


Sequential exploratory mixed methods study using focus groups and online questionnaires in **186 patients with asthma and 63 HCPs**

What HCPs believe would be useful functions in an mHealth system ? A Device / system ...

*

0

1... that offers advice regarding when additional medical attention should be sought 2... that detects and alerts patients and/or healthcare professionals to a deterioration in their asthma control before they would normally notice 3... that provides instructions on how to manage their asthma in an emergency ... to help patients monitor their asthma over time ... for patients to use as their asthma action plan ... to collect data that patients can show their doctor/healthcare professional, to demonstrate how their asthma has been ... that can tell if changes to patient's asthma meds have improved their asthma control ... to offer educational materials about asthma ... that can be used to call for emergency help during an asthma attack ... that can take measurements and update a patient's medical record ... to record treatment side effects

... that could replace routine (e.g. annual) asthma check-ups

Sequential exploratory mixed methods study using focus groups and online guestionnaires in 186 patients with asthma and 63 HCPs

"It would be handy having an app so that you can monitor (asthma) yourself... to show your consultant and respiratory nurse exactly how your asthma has been... because often when they ask you can't remember". [Patient #7, London]

HEALTHCARE PROFESSIONAL

"It's a very powerful tool to be able to show (patients) the data and say this is what is happening... rather than just saying you've got to keep taking your medication... you are empowering them with their treatment". [HCP #3]

Asthma patients *less likely than HCPs* to believe measuring adherence, inhaler technique, respiratory symptoms could help them achieve better asthma control *Simpson*

Simpson A et al, ERJ 2017

Which of the following measurements do you think could help you/your patients achieve better asthma control?

Response options	Asthma [#]	HCPs [¶]	p-value⁺	Asthma		p-value ^{##}
				Uncontrolled §	Controlled ^f	
Measurements of environment conditions	70	68	0.81	75	65	0.16
(e.g. pollution, allergens, temperature and humidity)						
Measurements of lung function (e.g. peak flow and	71	75	0.58	71	70	0.82
measurements of airway inflammation)						
Measurements of breathing (e.g. breathing rate and	64	60	0.60	68	60	0.29
details of how often you cough)						
Measurements of heart rate and activity levels	46	37	0.18	49	43	0.39
Measurements of stress levels	53	37	0.03	57	49	0.27
Measurements of medication adherence	48	89	<0.001	52	44	0.32
Measurements of inhaler technique	42	87	<0.001	43	43	0.98
Measurements of diet	32	32	0.94	36	24	0.09
Measurements of guality of sleep	54	44	0.20	58	48	0.16
Measurements of self-reported symptoms	34	57	<0.001	40	30	0.19

Asthma patients *less likely than HCPs* to believe measuring adherence, inhaler technique, respiratory symptoms could help them achieve better asthma control

Simpson A et al, ERJ 2017

Which of the following measurements do you think could help you/your patients achieve better asthma control?

Response options	Asthma [#]	HCPs [¶]	p-value⁺	ue⁺ Asthma		p-value ^{##}	
				Uncontrolled§	Controlled ^f		
Measurements of environment conditions	70	68	0.81	75	65	0.16	
(e.g. pollution, allergens, temperature and humidity)							
Measurements of lung function (e.g. peak flow and	71	75	0.58	71	70	0.82	
measurements of airway inflammation)							
Measurements of breathing (e.g. breathing rate and	64	60	0.60	68	60	0.29	
details of how often you cough)							
Measurements of heart rate and activity levels	46	37	0.18	49	43	0.39	
Measurements of stress levels	53	37	0.03	57	49	0.27	
Measurements of medication adherence	48	89	<0.001	52	44	0.32	
Measurements of inhaler technique	42	87	<0.001	43	43	0.98	
Measurements of diet	32	32	0.94	36	24	0.09	
Measurements of quality of sleep	54	44	0.20	58	48	0.16	
Measurements of self-reported symptoms	34	57	<0.001	40	30	0.19	

Data security

was a common theme across focus groups. Patients expressed opposing views with regards to data security, with some patients unconcerned with how their data was managed and some insistent that data security is of upmost importance. Participants of the focus groups expressed unanimous support for their data to be used in an anonymous format for research purposes, whilst questionnaire results suggest just over half (58%) of patients were happy for anonymous data to be used for research purposes.

Patient Trust : Digital Health - A Brave New World ?

ERS Congress 2020

Challenges for Digital Health : Going Forward

We need high quality evidence

Margaret McCartney: Innovation without sufficient evidence is a disservice to all McCartney, BMJ 2017

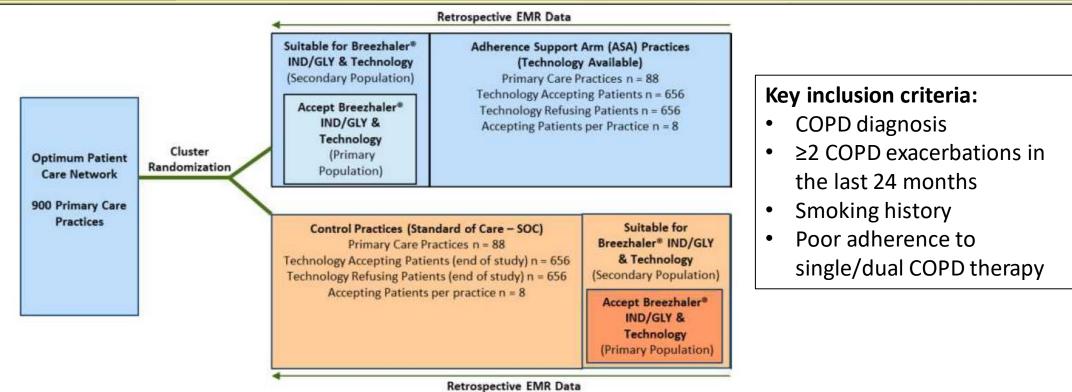
"It's not that I don't think technology has potential. It does. But we need high quality evidence, which should mean high quality trials"

Studies are of moderate quality

- Short term (< 3 6 months)
- Show high heterogeneity in study end-points
- Varied study designs, difficult to compare
- Lack of defining minimal clinical difference (MCID) *a priori*

Are decision makers rushing to introduce tele-monitoring in pressure to reduce hospitalisations without weighing up all the evidence?

MAGNIFY : A Pragmatic Cluster Randomised Trial of Adherence Support in COPD


Price D et al, Prag Obs Res 2021

Open Access Full Text Article

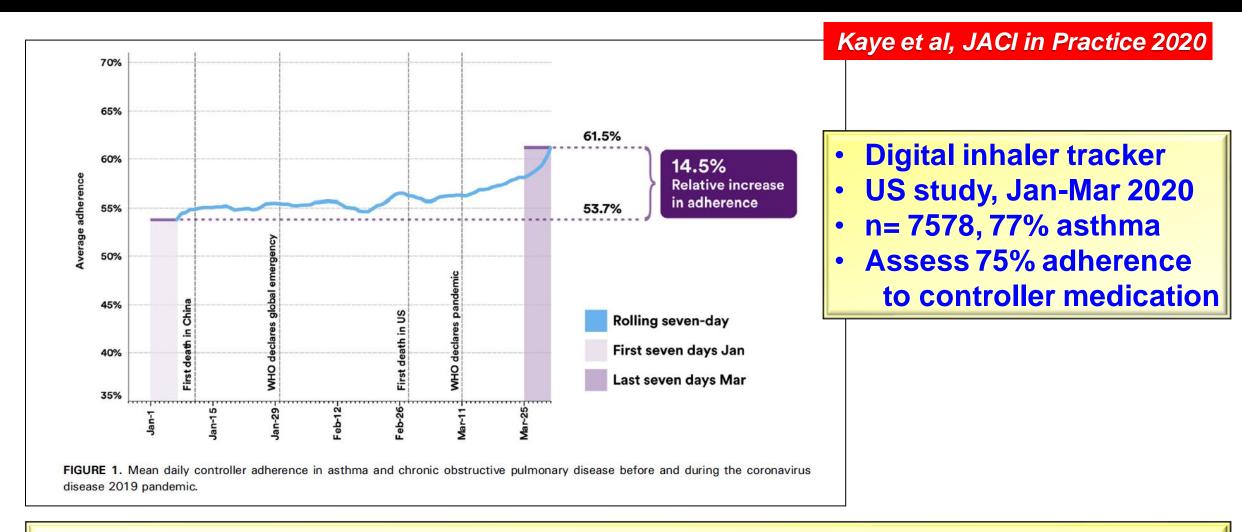
STUDY PROTOCOL

Maximizing Adherence and Gaining New Information For Your Chronic Obstructive Pulmonary Disease (MAGNIFY COPD): Study Protocol for the Pragmatic, Cluster Randomized Trial Evaluating the Impact of Dual Bronchodilator with Add-On Sensor and Electronic Monitoring on Clinical Outcomes

Aim: To evaluate the impact of an enhanced adherence package (inhaled dual bronchodilator + add on inhaler sensor + mobile app) on time to treatment failure and other clinical outcomes in exacerbating **COPD** patients with poor adherence to mono or dual therapy over 1 year

Using Virtual Consultations in the Fight Against COVID-19

Greenhalgh T, The Health Foundation Mar 2020



Education and Training of Patients

https://www.asthma.org.uk/advice/inhaler-videos/

Inhaler Adherence During COVID-19 Pandemic

Using electronic medication data on controller medication there were positive increases (~15%) in medication adherence

Delivering Health Education to HCPs During a Pandemic in LMICs

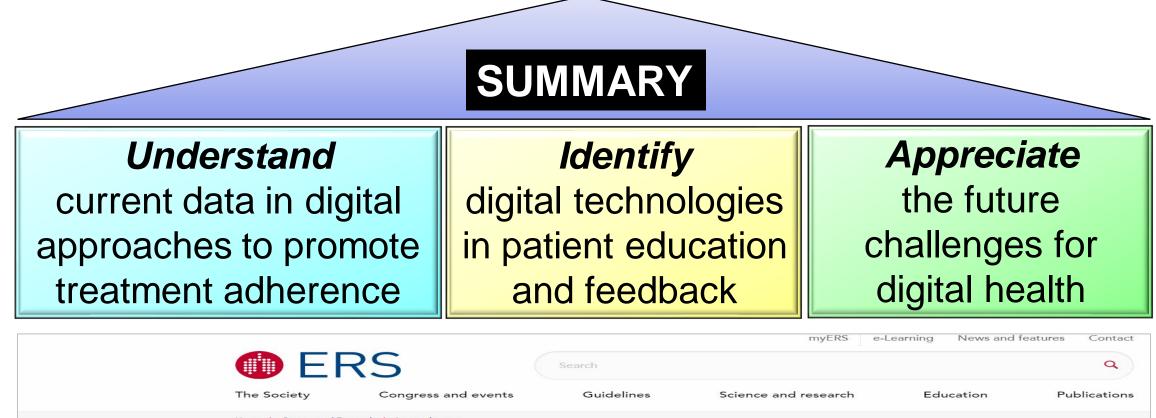
Locally appropriate blended-learning technologies requiring minimal data, power and IT skills exist and can be widely used

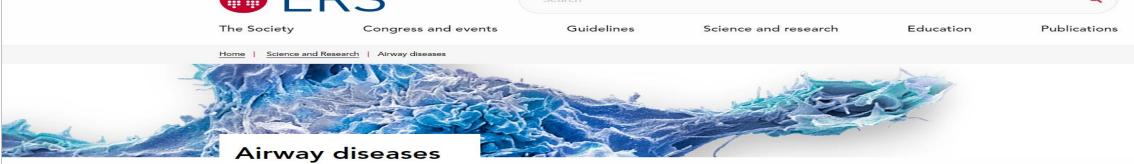
In LMICs, traditional face-toface healthcare education is

- resource intensive
- low impact
- time and cost prohibitive

Online training is difficult re:

- cost & availability of mobile data
- IT hardware
- electricity
- expert tutors




The system overcomes many of the practical obstacles encountered in providing large scale health education allowing high quality teaching, in sustainable programmes with inbuilt rigorous and rapid evaluation

Impact of Digital Technology Use on the Environment

Digital Approaches to Promote Adherence to Treatments and Patient Education

Digital Approaches to Promote Adherence to Treatments and Patient Education

Dr Omar S Usmani, *MBBS PhD FHEA FRCP FERS*

Reader in Respiratory Medicine, Imperial College London

& Consultant Physician, Royal Brompton Hospital

Head of ERS Assembly 5 : Airway Diseases, Asthma, COPD, Chronic Cough

Imperial College London

Digital Respiratory Medicine – Realism v Futurism A Digital Health Summit of the ERS

